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* Schottky diodes are faster, but break easily at higher power levels

* No direct locking
laser for pump and
o Jitter and drift at

between FEL and NIR laser
* Roll off at higher frequencies
* Precise on wafer de-embedding

THEORY OF THz DETECTION WITH FETs
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CW = Channel width
CL = Channel length e

* Transmission (S,;) and

 Fast, simple, analytical and more accurate method for —=——

device characterization

e Derivation of lumped elements of a transmission line
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between free electron laser (FEL) and near infrared (NIR)
probe experiments

MOTIVATION
» (GaAs based field effect transistor (FET) THz detectors:
NIR" - Higher damage threshold compared to Schottky detectors
= - Higher mobility of GaAs compared to other substrates (e.g. GaN)
* Simultaneous detection of amplitude and timing at ps scale for THz and

picosecond scale while synchronizing the repetition rate

NIR pulses [1]
Investigation of THz coupling in rectifying elements
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DUT * Antenna-coupled and large area FETs are promising candidates
FABRICATED AND SIMULATED DEVICES
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DEVICE CHARACTERIZATION BY S-PARAMETERS

Reflection (S;,) coefficients

at higher frequencies
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On wafer TRL de-embedding and error boxes
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and CPB calculation [5]

CONCLUSION AND OUTLOOK
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Simulations fit to measurements
On wafer TRL de-embedding performed successfully

DC resistance of CL/CW 1s 1n agreement with expected values
Value of lumped elements calculated for transmission line
Lumped elements’ values for 2DEG 1s under investigation
Results will help in optimizing future FET's for accelerator applications
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Derivation of r, for coplanar waveguide (CPW)

Lumped elements equivalent circuit of FET's
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Co = capacitance/length C.p = Gate-Drain capacitance

lp = inductance/length Z , = Antenna radiation impedance

Z = Impedance of transmission line  Z .= Access impedance due to ungated part
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Good agreement between expected and

with constant G and variable W measured values
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