Bunch Length Measurements Using Beam Position Monitors (BPMs) C. Richard, Michigan State University, East Lansing, MI, USA S. Cogan, S. Lidia, Facility for Rare Isotope Beams, East Lansing, MI, USA

Signals Measured by BPMs

- Broad band signals measured using time interleaved sampling
- 40.25 MHz signal is sampled at 119 MHz
- Results in an effective sampling rate of 2.737 GHz

Simulations

- CST Studio simulations confirm the analytic field distribution at the pipe wall
 - Simulated pencil beam and uniform beam distributions for different offsets, beam sizes, and velocities
 - Measured field at points on wall and with a BPM model

- The signals need to be calibrated for effects from the digitizer, 500 MHz low pass filtering, and dispersion from the cables connecting the pick ups to the digitizer
- Harmonics of 80.5 MHz were input into the cables for each button on a BPM and measured with the digitizer
- The signals must also be corrected for the impedance of the buttons

- The calibrated signals represent the field distribution measured by the buttons, not the bunch distribution
- For a transversely and longitudinally longitudinal bunch the field on the pipe wall is •

$$\sigma_{\text{wall}}(\omega, z_m, \phi_m) = D_{\omega} \cos\left[\frac{\omega}{\beta c}(z_m - z_0)\right] \int dA_{\text{beam}} \sum_{n=0} \frac{I_n(gr/R_p)}{\pi N I_n(g)} \cos[n(\phi_m - \phi)] e^{-\frac{(x - x_0)^2}{2\sigma_x^2} - \frac{(y - y_0)^2}{2\sigma_y^2}} \qquad g = \frac{\omega R_p}{\gamma \beta c},$$

J. Cuperous, NIM, 1977

The round button geometry is accounted for with a transit time factor

FRIB MEBT Measurements

Fit the field equation with TTF to measured signals using seven fit parameters • Fit parameters: amplitude, noise offset, x_0 , y_0 , σ_x , σ_y , σ_z

This factor is calculated for each azimuthal mode separately

$$\Gamma(\omega) = \frac{2}{n} \int_{-R_b}^{R_b} \mathrm{d}z_m \cos\left[\frac{\omega}{\beta c}(z_m - z_0)\right] \sin\left[\frac{n}{R_p}\sqrt{R_b^2 - z_0}\right]$$

Scaling with Transverse Properties

- Scalings with g \bullet
 - Need to account for transverse properties up to g~1
 - In FRIB MEBT, ß=0.032 corresponding to g~1-6 for measurable bandwidth ۲

Button Sum Scaling

- Fitting the parameters needs improvements
 - The transverse position and beam size match measurements from the BPMs and wire \bullet profile scanner
 - Longitudinal beam size from fitting fails to follow trend of simulation when scanning the voltage of a buncher cavity

- By adding the button signals, the measurements are less dependent of the transverse distribution
 - Offsetting a pencil beam 1.5 mm deviates by ~6% from centered case. For a single \bullet button the deviation is $\sim 50\%$
- But, the beam position and transverse sizes cannot be uniquely determined with this method

