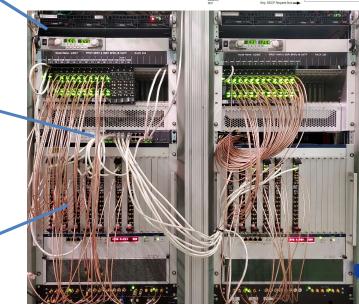
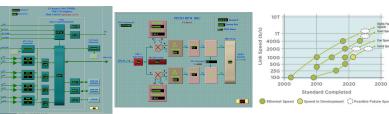
# GigE-Bus for Instrumentation DAQ & Control (TUPP11)

N. Eddy, J. Diamond, R. Santucci, A. Semenov, D. Slimmer, D. Voy, Fermilab

### System "Controller"

- > Standard commodity rackmount server running Linux
- Excellent price/performance ratio
- Can be configured to suit system needs
- > Many standard tools/compilers/codes available
- Easily upgradeable
- Two 10G Ethernet Interfaces
  - One for local "Bus" private network
  - One for Controls Network


#### Ethernet Switch "Backplane"


- > Standard commodity managed ethernet switch
  - 32 port 10G Switch
  - · Standard network monitoring and diagnostics
  - Possibility to interleave 1G devices
- > Leverage huge existing infrastructure
- Provides a great deal of flexibility...
  - Devices can be separated over large distances
  - Controller may be in controlled environment

#### **Custom Digitizer "Device"**

- > VME form factor with Gigabit Ethernet on front-panel
- VME crate used for power and cooling
- >8 channel 250MS/s 16bit JESD204b ADCs
- Clocks locked to external machine reference
- > Altera Aria V FPGA with NIOS softcore
  - Use NIOS for slow control
  - Use dedicated HDL for high speed data
  - Use UDP to simplify interface
- Replace Device NIOS softcore with hardcore SoC
  - UDP -> TCP/ip more robust
- Simplify device code
- Path to increase speed 10G and beyond

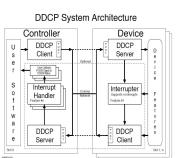
| 1U Single Xeon 4210 10 Core 2.20GHz Server Node<br>Itemized Breakdown per Node:                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                    |
| 1U chassis, 4 x 3.5" hot-swap SAS/SATA HDD bays, 1U 500W<br>Redundant Power supplies, 1 full height expansion slot, Mounting Rails |
| Ket included.                                                                                                                      |
| Intel C622 chipset, Single Socket P (LGA 3647), 6 x 288-pin DDR4                                                                   |
| DIMM slots, up to 768GB ECC LRDIMM-2666MHz RAM. Onboard                                                                            |
| Dual LAN with 10GBase-T with Intel X722+X557, IPMI 2.0, KVM with                                                                   |
| dedicated LAN and Aspeed AST2500 BMC Graphics. 10 SATA3 (6Gbps                                                                     |
| ports. Broadcom 3008 SW controller for 4 SAS3 (12Gbps) ports, RAID (                                                               |
| 1, 10. 2 COM Ports (1 rear, 1 header), TPM Header. 1 x M.2 Interface:                                                              |
| PCIe 3.0 x4 and SATA , Form Factor: 2280, 22110. Expansion slots: 1                                                                |
| PCIE 3.0 x8 and 1 PCIe 3.0 x32.                                                                                                    |
| Intel Xeon 4210 10 Core 2.20GHz 13.75MB Cache 85W Processor                                                                        |
| IU Heat Sink                                                                                                                       |
| Micron 8GB DDR4-2666 ECC RDIMM (runs up to 2400MHz)                                                                                |
| HGST 1W10001 - 1TB SATA 6Gb/s 3.5" HDD - Mirror with onboard                                                                       |
| Broadcom 3008 SW Controller                                                                                                        |
| 1U Riser Slot                                                                                                                      |
| Assembly/Configuration/Test with Fermi Linux                                                                                       |
| Five Year Warranty Parts and Onsite Labor                                                                                          |





## Gigabit Ethernet Control/Readout "BUS"

- Distributed Data Communication Protocol (DDCP)
- Client/Server protocol developed at FNAL
- Can be implemented with UDP or TCP/ip
- Bench tests show no speed loss from UDP to TCP/ip
- Use Jumbo Packets (9kb)
- Header & Payload construct
- Feature concept to abstract software from device implementation
- > Provide for interrupts from Device to Controller


#### **PIP2IT BPM System**

- > First full system implementation
- > 25 Beam Position Monitors 4 channels per pickup
  - 2 DDC per channel -> I/Q at 1st and 3rd Harmonics
  - Variable rate from 1MS/s to 50KS/s
  - Data (1k samples)\*2\*2\*4\*(4 byte) = 32kB/bpm
- ➢ Pulsed beam @20Hz
  - Positions (X,Y), Phase, Intensity (1<sup>st</sup> & 3<sup>rd</sup>)
  - Average over pulse and pulse waveform
- See >100MB/s real readout speeds

#### The Future...

- > Very flexible Architecture
  - Devices can be anything with ethernet port
  - Single box, Crate of devices, μTCA crate, etc
- One Controller can support many systems
- Ethernet is not going away
- > Huge market -> low costs
- > Clear upgrade Roadmap for Ethernet
  - 10G, 50G, 100G, beyond...
- Ideal for future streaming applications (CW Beams)
  - > No readout noise on sensitive instruments



