If you wish to discuss,

I will be at TUPP20

BPM Low ß Calibration Test Stand

C. Richard, Michigan State University, East Lansing, MI, USA S. Lidia, Facility for Rare Isotope Beams, East Lansing, MI, USA

Corrections for capacitative pick-ups for non-relativistic effects

- Non-relativistic beams are not pancaked longitudinally.
 - Standard analysis does not account for non-relativistic effects to simplify results.
 - The different field extents affect the measurements
- Corrections for non-relativistic effects
 - Analytic: $x \propto \frac{1}{1+G} \frac{\Delta}{\Sigma}$, $G = \frac{g}{2} \frac{I_0(g)}{I_1(g)}$, $g = \frac{\omega D}{\beta \gamma c}$
 - Simulation: simulate response of device to non-relativistic beams
- Want benchtop test stand for measuring effects
 - Test stand must replicate field profile and velocity of beam
- Helical transmission lines can be used
 - They propagate pulses at low phase velocities

Geometry

- The helix has pitch angle ψ and radius a. In simulations it has thickness Δa
- Centered in the helix is a conducting rod of radius R_i
- The inner conductor is covered in a dielectric of thickness $s = a R_i$ and dielectric constant ϵ_r . This supports the helix
- The helix is inside a pipe with radius R_e
- The signal is input into the internal region using a microstrip with the same impedance as the helix

Internal-External Coupling

0.9 ·

0.8

0.7

0.6 · 0.5 ·

0.4

0.3 · 0.2 ·

0.1

- Signal is input into internal region, need field in external region to replicate a beam
 - The coupling suppresses low frequency components
- The signals are input in the internal region, therefore the input signal must be tailored to correct for this effect
 - The sum of two Gaussians can be used to approximate a Gaussian pulse in the external region

Phase velocity

- The helical transmission line can theoretically support arbitrarily low phase velocities to match the velocities of non-relativistic beams
 - Simulations with the given parameters have $v_p \approx 0.03c$ which is sufficiently low for the FRIB MEBT with beam velocity $v_b = 0.032c$
- The phase velocity in simulations agree well with analytic results
 - However, better agreement can be achieved by assuming $a \rightarrow a + \Delta a$ in the analytic solution. This works for a range of Δa . Currently, this phenomenon is not understood

Beam Comparison

- An analytic beam profile was made to exactly match the electric field at the helix
 - The field from the beam at the pipe wall matches the helix simulations until the signal becomes noisy
- Different transverse profiles of the analytic beam were matched the helix field
 - The helix charge distribution best represents a ring beam

Off Center Helices

- The helix needs to be offset to replicate the fields from offset beam.
- In simulations, the helix was offset in a grip up to 10 mm in 2 mm steps
 - No significant changes to dispersion or S11 are seen
 - Therefore no special considerations for the offset need to be made

MICHIGAN STATE

V E R

N

S

References:

R. Shafer, "Beam position monitoring", 1992
S. Sensiper, thesis, 1951
P. Kowina *et al.*, in *Proc DIPA'09*, pp.35-37
O. Yair *et al.* in *Proc IBIC'14*, pp.355-360

