

THPP11

STUDY OF MULTI-BLADED PHOTON BPM DESIGNS Y.-R. Eugene Tan Australian Synchrotron – ANSTO

Centroid Calculations

• Four methods adopted: Difference over sum, center of mass, and Caruana and Guo's Gaussian fitting algorithm

squares fit of the distribution, in this test case a Gaussian distribution, to the beam profile sampled by the multiple blades.

Simulation

- IVU model: 22 mm period, $K_{\mu} = [1.03, 1.85]$, 3 meters
- Simple geometry with 2 mm vertical blades and variable horizontal gaps between the blades.
- Photon spectrum calculated at an observation angle of 0.2 mrad as expected to be measured by the photon blades

FIGURE 1: Undulator spectrum at an observation angle of θ_{v} = 0.2 mrad for a K_{μ} = 1.03 (lack) and 1.85 (red).

Conclusions

- Gaussian fitting methods do result in a reduced dependence on K_{μ} values simultaneously in x/y planes.
- Gain is less sensitive to changes in the position of the blades.
- Gaussian methods require 4+ blades, using only 3 made the position values very sensitive to noise.
- Optimal Sx value:

blades are closer to the core of the photon beam optimal simultaneously in both planes

- Linearity of the Gaussian method is similar to DS.
- Noise immunity is poorer compared to DS method by as much as 100%.
- Future work: Extend to 2D (less blades), blades \rightarrow pixel like using rods

References

T. Tanaka and H. Kitamura, "SPECTRA: a synchrotron radi-ation calculation code," Journal of Synchrotron Radiation, vol. 8, no. 6, pp. 1221–1228, Nov. 2001.doi:10.1107/S090904950101425X.

H. Guo, "A simple algorithm for fitting a gaussian function[dsp tips and tricks]," IEEE *Signal Processing Magazine*, vol. 28, no. 5, pp. 134–137, 2011.

	S_x	DS (mm / µm)	CM (mm / µm)	Caruana (mm / µm)	Guo (m	m / µm)	Lesio	resid		
X-Plane	0.5mm	0.63-0.80 / 12.6-19.3	0.53-0.80 / 09.1-13.2	0.50-0.80 / 15.6-21.7	0.51-0.80	15.0-21.5		→ → → → → → → → → → → → → → → → → → →	-0.1	
	1.0mm	0.47-0.61 / 07.5-10.5	0.60-0.67 / 08.7-09.5	0.48-0.59 / 09.9-10.7	0.61-0.74	08.4-10.1			-0.2	
	1.5mm	0.46-0.52 / 07.3-08.5	0.76-0.80 / 11.3-12.1	0.57-0.62 / 13.0-15.6	0.80-0.80	09.1-09.8	-0.5 Boom of	$0 \qquad 0.5$	-0.5 Boom of	$0 \qquad 0.5$
	2.0mm	0.48-0.50 / 08.5-08.7	0.80-0.80 / 15.5-17.8	0.70-0.78 / 22.8-29.6	0.50-0.80	11.0-11.6	Beall Of		Beam Or	
	2.5mm	0.49-0.51/09.9-11.5	0.80-0.80 / 21.6-26.2	0.80-0.80/41.9-55.2	0.55-0.60	13.3-15.5	0.08			
	3.0mm	0.51-0.57 / 12.6-16.2					<u> </u>		0.3	
	4.0mm	0.66-0.72 / 23.6-33.0					E	E E	0.2	
	5.0mm	0.79-0.80 / 45.8-63.1						oise (
Y-Plane	0.5mm	0.41-0.42 / 05.8-06.2	0.46-0.48 / 16.2-17.7	0.80-0.80 / 56.4-74.4	0.39-0.40	11.4-13.8	⁵ 6 [×] 0.02	در رو رو	[°] 0.1	nterummenter
	1.0mm	0.42-0.44 / 06.6-08.1	0.48-0.51 / 18.4-22.9	0.80-0.80 / 60.3-82.7	0.40-0.41	12.7-16.3		May - Arad Martin de Stati		
	1.5mm	0.44-0.48 / 08.5-12.4	0.53-0.60 / 23.1-33.4	0.80-0.80 / 67.9-99.2	0.41-0.44	15.2-22.0	-0.5	0 0.5	-0.5	0 0.5
	2.0mm	0.50-0.55 / 12.1-20.0	0.60-0.72 / 31.8-51.5	0.80-0.80 / 81.7-123	0.44-0.49	20.2-32.4	Beam of	fset Δ X(mm)	Beam of	fset Δ Y(mm)
	2.5mm	0.50-0.65 / 18.2-33.1	0.70-0.80 / 46.4-78.4	0.80-0.80 / 102-156	0.48-0.60	28.5-49.7	FIGURE	5. Linearit	v define	
	3.0mm	0.63-0.80 / 29.3-55.2					TIOUNE	J. Lincant	y uchine	uxyy
	4.0mm	0.80-0.80 / 74.6-140			(a)	(\mathbf{b})	extent w	here the r	esidual (error is
	5.0mm	0.80-0.80 / 179-317			(4)					
								solution va	alues. Re	esolution
		Linearity (a) Resolution (b)					calculated from 100 samples.			

+61 2 9717 3111 enquiries@ansto.gov.au www.ansto.gov.au