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Abstract
Studies performed during the last few years at different

facilities have indicated that the emission of Cherenkov
Diffraction Radiation (ChDR) can be exploited for a range
of non-invasive diagnostics. The question remains of how
to choose an optimal dielectric material and which radiator
shapes give the most promising results. This contribution
presents a semi-analytical framework for calculating the
electromagnetic field of a charged particle beam, taking into
consideration its interaction with surrounding structures. It
allows us to directly compute ChDR at arbitrary probe po-
sitions inside the radiator. Several configurations will be
discussed and presented, including flat and cylindrical ra-
diators of various dimensions and electrical properties, as
well as multilayer structures obtained by adding coatings of
metallic nanolayers.

INTRODUCTION
A decade after the discovery of Cherenkov radiation [1],

Ginzburg and Frank [2] studied the radiation emitted by a
particle moving along the axis of an infinitely long evac-
uated tunnel surrounded by a dielectric medium. During
the following decades Linhart [3] and Ulrich [4] described
a similar phenomenon associated with a particle moving
parallel to the surface of a dielectric half space. These two
are the initial examples of Cherenkov Diffraction Radiation
(ChDR), which describes the emitted radiation of a charged
particle passing in the close vicinity of a dielectric medium
and having a velocity greater than the phase velocity of light
in that medium.

Recently, the possibilities which ChDR brings to non-
invasive beam diagnostics have been extensively investigated,
with the first observation of incoherent radiation, using GeV
electrons and positrons at Cornell [5, 6]. What followed
were designs of beam position monitors [7] as well as bunch
length monitors [8] based on the coherent radiation from
short bunches. In parallel more refined radiation models
have been developed [9, 10]. In addition, several accelerator
facilities across the world have confirmed the feasibility of
observing ChDR [11–13].

All this interest motivates the need of developing a tool
for quantitative description of ChDR for real case scenarios.
Most analytic models serve well only in a limited spectrum
of cases, due to the simplicity of the considered radiators.
On the other hand, more flexible numerical simulations are
∗ kacper.lasocha@cern.ch

very time consuming, especially if the radiator components
differ significantly in size. The aim of this contribution is
to present a semi-analytical approach, which is based on
numerical calculations of the beam field propagating across
surrounding materials, according to constraints set by the
Maxwell equations. The presented procedure describes ra-
diators infinite in the direction of beam propagation, but
gives the possibility of studying complex multilayer struc-
tures orthogonal to the direction of beam propagation. The
proposed method should be treated as a natural extension of
a framework for beam impedance calculations, developed at
CERN [14].

CYLINDRICAL GEOMETRY
We shall start by considering the geometry presented in

Fig. 1 which is described using cylindrical coordinates 𝑟, \
and 𝑠. A charged particle travels with the velocity 𝑣 = 𝛽𝑐

along the 𝑠 axis in the centre of an axisymmetric structure,
consisting of an arbitrary number of layers. Each layer has
its own permittivity 𝜖𝑖 and permeability `𝑖 , which may be
frequency dependent. The central layer is constrained to be
vacuum, but the subsequent layers may be any material, with
the outermost layer extending to infinity.

Cylindrical layers of different materialsCylindrical layers of different materialsCylindrical layers of different materials
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Figure 1: Cylindrical geometry with concentric layers of
different materials. The beam travels along the axis perpen-
dicular to the page.
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The longitudinal component of the electric and magnetic
field (𝐸 (𝑝)

𝑠 and 𝐻 (𝑝)
𝑠 ) in a probe point at a distance 𝑟 from

the axis, located in layer 𝑝, have the following explicit form
in frequency domain:

𝐸
(𝑝)
𝑠 = 𝑒− 𝑗𝑘𝑠

[
𝐶

(𝑝)
𝐼 𝑒
𝐼0 (a (𝑝)𝑟) + 𝐶 (𝑝)

𝐾𝑒
𝐾0 (a (𝑝)𝑟)

]
, (1)

where 𝐼0 and 𝐾0 are zero-order modified Bessel functions of
first and second kind respectively, 𝑘 = 𝜔

𝑣
is a wave number

and a (𝑝) = |𝑘 |
√︁

1 − 𝛽2𝜖𝑝`𝑝 is a radial propagation con-
stant. This follows from [14, Eq. (1.85)] by noting that for
a centered beam all modes apart from 𝑚 = 0 do not con-
tribute to the field. The complex coefficients 𝐶 (𝑝)

𝐼 𝑒
and 𝐶 (𝑝)

𝐾𝑒

depend on frequency, particle velocity and the considered
structure. Their explicit calculation is thoroughly shown
in [14, Ch. 1.4]. What should be emphasized, is that their
computation involves only a small number of Bessel func-
tion evaluations and matrix multiplications, and is therefore
very fast. The longitudinal component of the magnetic field
can be expressed in a similar manner, but it turns out that
𝐻

(𝑝)
𝑠 = 0.
Based on Maxwell’s equations we can also derive the

transverse component of both fields [14, Appx. E.1.1]. The
only non-zero transverse components will be 𝐸𝑟 and 𝐻\ .
In order to derive the time integrated radiated energy, we
define

®𝑃(𝜔) = ℜ
[
®𝐸 (𝜔) × ®𝐻∗ (𝜔)

]
,

where ®𝐻∗ is the complex conjugate of the magnetic field
®𝐻 and ℜ [·] denotes the real part of a vector. The energy

radiated outside a given volume 𝑉 that contains the beam, is
given by

Δ𝐸 =
1

2𝜋

∫
𝑑𝜔

∯
A=𝜕𝑉

®𝑃(𝜔) · 𝑑A, (2)

as a consequence of the Poynting theorem.

FLAT GEOMETRY

The next geometry considered is a flat geometry described
using Cartesian coordinates 𝑥, 𝑦 and 𝑠. This consists of
a series of infinitely long (in 𝑠 direction) and wide (in 𝑥
direction) plates, each having its own thickness, permittivity
𝜖𝑖 and permeability `𝑖 . A charged particle travels in the 𝑠
direction inside the central layer, which again we constraint
to be vacuum. It is also assumed that the top and bottom
outermost layers are infinitely thick. An example of such a
structure is presented in Fig. 2.

Let us pick a probe point 𝑃 = (𝑥, 𝑦, 𝑠) placed in layer 𝑝.
The longitudinal component of the electric and magnetic
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Figure 2: Flat geometry with parallel layers of different
materials. The beam travels perpendicular to the page in the
plane 𝑦 = 0.

field are of the form [14, Eq. (1.180,1.181)]:

𝐸
(𝑝)
𝑠 = 𝑒− 𝑗𝑘𝑠

×
∫ ∞

0
𝑑𝑘𝑥 cos(𝑘𝑥𝑥)

[
𝐶

(𝑝)
𝑒+ (𝑘𝑥)𝑒𝑘

(𝑝)
𝑦 𝑦 + 𝐶 (𝑝)

𝑒− (𝑘𝑥)𝑒𝑘
(𝑝)
𝑦 𝑦

]
,

𝐻
(𝑝)
𝑠 = 𝑒− 𝑗𝑘𝑠

×
∫ ∞

0
𝑑𝑘𝑥 sin(𝑘𝑥𝑥)

[
𝐶

(𝑝)
ℎ+ (𝑘𝑥)𝑒𝑘

(𝑝)
𝑦 𝑦 + 𝐶 (𝑝)

ℎ− (𝑘𝑥)𝑒𝑘
(𝑝)
𝑦 𝑦

]
,

where 𝑘 (𝑝)𝑦 =

√︃
𝑘2
𝑥 + a (𝑝)

2 is the vertical wave number,
with a (𝑝) defined as in the previous section. Coefficients
𝐶𝑒±, 𝐶ℎ± again depend on 𝑘𝑥 , frequency and the properties
of all the layers, but this time their calculation requires a
time-consuming matrix inversion (all the related details can
be found in [14, Ch. 1.5]). On top of that, due to the com-
plicated form of the integrand, the integration needs to be
performed numerically. This all results in much slower field
calculations than in the case of cylindrical geometry. The
transverse components of the electromagnetic field can be
derived from the longitudinal ones in the classical way, see
[14, Appx. E.2.1]. Having all the components we can calcu-
late the radiated energy in the same way as in the previous
section.

CHERENKOV DIFFRACTION
RADIATION

The geometries discussed in the two previous sections
are suitable to study the properties of ChDR. To do this we
choose the outermost layer to be a dielectric and place the
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probe point at a given depth inside this layer. The dielectric
layer is set to be infinitely thick in order to avoid reflections
from its outermost surface. By creating a grid of probe
points, we are able to estimate either a total radiated energy,
using Eq. (2), or the spatial distribution of the radiation.

Figure 3 shows the spectral distribution of the energy
emitted by a point particle with a charge equivalent to 1 C,
which travels a distance of 1 m along the axis of a vacuum
cylinder of radius 𝑟 . The cylinder is surrounded by an infinite
dielectric with a refractive index of 𝑛 = 2. The velocity of
the point particle corresponds to 𝛾 = 10. As a reference, we
plot the distribution for Cherenkov radiation emitted by a
particle passing directly through the medium, obtained from
the classical Frank-Tamm formula [15]:

𝑑𝐸

𝑑𝑥
=
𝑞2

4𝜋

∫
𝑣> 𝑐

𝑛(𝜔)

`(𝜔)𝜔
(
1 − 𝑐2

𝑣2𝑛2 (𝜔)

)
𝑑𝜔.
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Figure 3: Comparison between Frank-Tamm formula
(Cherenkov radiation) and Eq. (2) with decreasing cham-
ber radii (ChDR).

As can be seen in Fig. 3 the calculated distributions follow
the Frank-Tamm formula for 𝜔 ≪ 𝛾𝑐

𝑟
. On the other hand,

for 𝜔 ≫ 𝛾𝑐

𝑟
the amount of radiated energy drops abruptly.

This is in agreement with the notion of effective radius, that
is the distance over which the particle’s field interacts with
the surrounding medium, determined in [10] to be 𝑟eff =

𝛾𝑐

𝜔
.

The presented model based on beam field calculations yields
not just qualitative, but quantitative results, which coincide
with the well-established Frank-Tamm formula.

SPATIAL DISTRIBUTION OF CHDR
A dense grid of probe points, in which we calculate EM

field components, allows us to estimate the spatial distribu-
tion of the radiation and monitor which parts of the radiator
interact with the beam. To illustrate such an analysis we
take the example of one of the experiments reported in [5].
A flat radiator made of fused silica (𝑛 = 1.45) mounted
above of the beam is considered, with a parallel bunched
beam of velocity corresponding to 𝛾 ≈ 10373. We consider

four different vertical impact parameters, that is to say the
distance between the axis of the beam and radiator surface:
0.9 mm, 1.08 mm, 1.32 mm and 1.38 mm. A series of probes
is placed 2 mm inside the dielectric at different 𝑥 offset with
respect to the beam. For every probe we calculate the vec-
tor ®𝑃(𝜔) in order to estimate the radiation intensity. The 𝑦
component of this vector is convoluted with the transverse
bunch profile, which is assumed to be a 2-D Gaussian with
𝜎𝑥 = 1.7 mm, 𝜎𝑦 = 170 µm. These values correspond to
the beam parameters of [5]. Note that in order to convolute
the results from this particle distribution, simulations are run
with impact parameters different from the four mentioned
above. The results are plotted in Fig. 4 for 𝜔 = 600 THz and
can be compared with [5, Fig. 4].
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Figure 4: Horizontal profile of ChDR (600 THz) at a depth
of 2 mm inside the flat dielectric.

It is interesting to see how the width of the discussed
distribution increases with the impact parameter, as this can
be compared with the experimental observations [6]. The
corresponding values are given in terms of Full Width at
Half Maximum (FWHM) in Table 1.

Table 1: Full Width at Half Maximum of ChDR (600 THz)
Horizontal Profile at a Depth of 2 mm Inside the Flat Dielec-
tric

Impact Par. [mm] FWHM [mm]
0.9 4.19
1.08 4.25
1.32 4.33
1.37 4.35

METALLIC NANOLAYERS
The presence of a thin metallic layer between the beam and

the dielectric may lead to the excitation of Surface Plasmon
Polaritons (SPP) on the metal-vacuum and metal-dielectric
intersection. As a consequence, one observes the creation
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of monochromatic Cherenkov radiation with significantly
enhanced intensity for particular frequencies [16].

We shall demonstrate this effect with the following setup:
a point particle with a charge of 11 𝑓 𝐶 travels with a velocity
corresponding to 𝛾 ≈ 118.42 inside a thin silver cylinder
surrounded by an infinite layer of a dielectric with a refrac-
tive index of 𝑛 = 1.45. The cylinder radius is 200 nm and
the silver layer is 80 nm thick. The radius and beam proper-
ties correspond to typical beam parameters and dimensions
of a Dielectric Laser Accelerator (DLA), reported in [17].
Considering a point charge instead of a distributed electron
bunch is a simplification which will require further correc-
tion depending on the bunch profile.

As Eq. (1) requires knowledge of the permittivity of silver,
we adopt the Drude model [18]

𝜖 = 𝜖∞ −
𝜔2
𝑝

𝜔2 − 𝑗𝛾𝜔
,

where for silver 𝜖∞ = 5.3 (high-frequency permittivity
limit), 𝜔𝑝 = 1.39 × 1016 rad/s (plasma frequency) and
𝛾 = 3.2 × 1013 Hz (damping constant), as given in [16].

In Fig. 5 we present the spectral distribution of the energy
radiated in the case of just the bare dielectric, calculated
as described in the previous sections, and in the case of an
added 80 nm thick silver coating. As we see, the presence
of the metallic layer has transformed a broad ChDR spec-
trum into a monochromatic visible radiation of significantly
higher intensity at that wavelength. The thickness of the
metal layer was chosen in order to maximize this effect.
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Figure 5: Surface Plasmon Polariton resonance at 660 THz
in the geometry compatible with Dielectric Laser Accelera-
tor described in [17].

CONCLUSION
The described theory has been implemented in the form

of C++ code with a Python wrapper included. In addition,
actions toward integrating it with Polarisation Currents Ap-
proach (PCA) [19] to form a single, independent simulation

package are ongoing. In the course of this integration a com-
parison between PCA and the presented approach will be
performed to validate the spectral properties of the radiation.

The approach presented in this contribution facilitates
calculation of ChDR spectral distributions. In particular, it
enables the effect of using multilayer radiators composed
of various materials (metals, dielectrics, lossy media) to be
studied. The parameters of these layers may be then tuned
in order to either maximize the expected radiation output
or reshape the spectral distribution. Contrary to previous
models, this method provides the spatial, rather than angular,
distributions of the radiation. This allows investigating how,
and over which volume, the beam field interacts with the
materials in different layers and generates radiation.

For applications in beam instrumentation, depending on
the accelerator parameters and environment, coating the sur-
face of the dielectric with metallic layers might be useful. It
can for example prevent the building up of electron cloud on
the dielectric in circular machines. Thin metallic layers, as
discussed in this paper would also provide a way to produce
a more monochromatic Cherenkov emission through the
generation of surface plasmonic wave. In addition, within
the model’s capabilities is evaluating the expected photon
flux, assessing beam position monitors sensitivity, or testing
the impact of unsought oxidation of radiator elements.
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