

TRANSVERSE EMITTANCE MEASUREMENT USING UNDULATOR HIGH HARMONICS FOR DIFFRACTION LIMITED STORAGE RINGS

K.P. Wootton, J.L. McChesney, F. Rodolakis, N.S. Sereno, B.X. Yang Argonne National Laboratory Lemont, IL 60439, USA

12th September, 2019 Malmö, Sweden

The submitted manuscript has been created by UChicago Argonne, LLC, Operator d Argonne National Laboratory (Yargonne'). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06/CH1357. The U.S. Government treating for testif, and others acting on its behalt, a paid-up nonexclusive, inrevocable workfulde license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://neurgy.gov/downloads/doe-public-access-plan

PRESENT AND UPCOMING STORAGE RINGS

Diffraction Limited Storage Rings (DLSRs) open new frontiers in X-ray science

	3rd Gen	4	1 th Gen						
500	0 0011.	500			Parameter		APS	APS-U	Units
				-	Energy	E	7.0	6.0	GeV
_					Horiz. emittance	ε_{x}	3100	41.7	pm rad
0 [th m			•	· ·	Horiz. beta	β_x	19.1	5.19	m
			0		Vert. beta	β_y	3.20	2.40	m
					Horiz. dispersion	η_x	167	0.39	mm
-500 -500	0 50	-500 -500		500	Energy spread	$\frac{\Delta E}{E}$	0.096	0.135	$% (\mathcal{O}_{\mathcal{O}}) = \mathcal{O}_{\mathcal{O}}$
	×[µm] APS R	eport LS-334 (2014)	x [µ m]	-					

- Diagnostics needed to measure high brightness beams
- APS-U horizontal emittance will be a lot like vertical emittance in APS today
 M. Borland, et al., in <u>Proc. IPAC'18</u>, Vancouver, Canada, THXGBD1 (2018)

EMITTANCE MEASUREMENT IN STORAGE RINGS

Variety of techniques to measure ~pm rad vertical emittance

- Imaging (pinhole, Fresnel zone plate)
- -Interferometry/ π -polarisation
 - e.g. J. Breunlin et al., NIMA, 803, p. 55 (2015)
- Projection
 - B. K. Scheidt, Proc. DIPAC2005, Lyon, France, CTWM01, (2005)
- APS-U: dedicated bending magnet X-ray based emittance, energy spread monitors
 - B. Yang et al., Proc. IBIC2016, Barcelona, Spain, TUPG66, (2016)
- Vertical undulator to measure vertical emittance
 - S. Takano, KEK Proceedings 97-20, pp. 18-29, Oct. 1997
 - K. P. Wootton, Proc. IBIC2015, Melbourne, Australia, TUCLA01, (2015)

CONCEPT – HORIZONTAL UNDULATOR

PREVIOUS WORK – VERTICAL UNDULATOR

- Vertical undulator
 - APPLE-II operated in vertical polarisation mode
- High undulator harmonics
- Vary vertical emittance
 - Contrast of valley to peak ratio on-axis
- Measurement of undulator high harmonics demonstrated down to 0.9 pm rad
 - K. P. Wootton, et al., PRSTAB, 17, 112802 (2014)

K. P. Wootton, et al., PRL, 109, 194801 (2012)

IEX UNDULATOR

- Intermediate Energy X-ray beamline
 - McChesney, et al., <u>NIMA, 746, p. 98 (2014)</u>
- Electromagnetic undulator, 12.5 cm period
- Horizontal, vertical, left and righthand circular polarisations
- Quasi-periodic operation possible
 - Detunes higher harmonics
 - Not used in this study
- Characterise performance with APS, measure with APS-U

Reprinted from M. Jaski, et al., in *Proc. PAC2013*, WEPSM09, p. 1064-1066 (2013), under CC-BY 3.0.

Earth Coil

- IEX undulator in vertical polarisation mode
- Undulator near maximum excitation (fundamental 461 eV)
- Vary vertical emittance through vertical dispersion wave (1%, 2%, 4%)
- Measure radiation profile of undulator 6th harmonic (2760 eV)

APS – EXPERIMENT RESULTS

Slit position (mm)

UCHICAGO ARGONNELLC U.S. DEPARTMENT OF U.S. Department of Energy laboratory U.S. Department of Energy laboratory

SIMULATIONS – PARAMETERS

Main changes to parameters from APS to APS-U

- Horizontal emittance reduced
 - Operate ID in horizontal polarisation
 - Measure horizontal emittance
- Electron beam energy reduced
 - Access higher harmonics (8th)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory U.S. Department, LLC.

ARGONNEuc

Parameter		APS	APS-U	Units
Electron beam				
Energy	\boldsymbol{E}	7.0	6.0	GeV
Horiz. emittance	\mathcal{E}_{X}	3100	41.7	pm rad
Horiz. beta	β_x	19.1	5.19	m
Vert. beta	$\beta_{\rm y}$	3.20	2.40	m
Horiz. dispersion	η_x	167	0.39	mm
Energy spread	$\frac{\Delta E}{E}$	0.096	0.135	%
IEX undulator	2			
Peak magnetic field	B_{x}	0.322	-	Т
Peak magnetic field	B_{y}	-	0.322	Т
Undulator period	λ_u	0.125	0.125	m
Number of periods	n_u	38	38	-
First harmonic	ϵ_1	461	339	eV
IEX beamline				
White beam slits		28.8	28.8	m

9

APS – SIMULATIONS

- SPECTRA 10.0
 - T. Tanaka and H.
 Kitamura, <u>JSR, 8, 1221,</u> (2001).
- Undulator fund. 461 eV
- Monochromator photon energy 2760 eV
- 28.8 m from ID centre
 - Position of white-beam slits

APS – SIMULATIONS

Consider vertical undulator, vertical emittance

11

APS-U – SIMULATIONS

Consider horizontal undulator, horizontal emittance

APS-U – SIMULATIONS

- Valley to peak ratio R
- At 40 pm, ratio of about 0.05
- Sensitivity extends to lower emittances
- Can increase *R* by operating with lower harmonics
- Measure vertical emittance using vertical undulator
 - Down to few pm rad
 - Previously demonstrated experimentally

FUTURE WORK - DIAGON DETECTOR

- Direct measurement of angular profile of undulator radiation
 - K. Desjardins, et al., AIP Conf. Proc., 879, 1101 (2007)
- Multilayer reflects X-rays within a energy bandpass

Reprinted from S. Hustache-Ottini, CERN Report CERN-2009-005, under CC-BY 3.0.

CONCLUSION

- DLSRs present new challenge to measurement of horizontal emittance
 Existing techniques to measure vertical emittance are applicable
- At APS, IEX undulator and beamline operational for users
- Measured 30 pm vertical emittance in APS storage ring
 Could be used to measure emittance during APS-U commissioning
- Present work first using a single photon energy
 - Enables DiagOn (or similar) pixel detector

REFERENCES

- 'Grand Challenge Science on Diffraction-Limited Storage Rings', Advanced Photon Source Rep. LS-334, Lemont, IL, USA, 2013.
- M. Borland, et al., in *Proc. IPAC'18*, paper THXGBD1, pp. 2872-2877, 2018.
- J. Breunlin et al., Nucl. Instrum. Methods Phys. Res. Sect. A, 803, p. 55 (2015)
- K. Desjardins, et al., <u>AIP Conf. Proc., 879, 1101 (2007)</u>.
- S. Hustache-Ottini, CERN Report CERN-2009-005, 2009.
- M. Jaski, et al., in *Proc. PAC2013*, paper WEPSM09, p. 1064-1066, 2013.
- T. Moreno, et al., <u>J. Synchrotron Rad., 19, 179 (2012)</u>.
- B. K. Scheidt, Proc. DIPAC2005, Lyon, France, CTWM01, (2005)
- S. Takano, KEK Proceedings 97-20, pp. 18-29, Oct. 1997.
- T. Tanaka and H. Kitamura, J. Synchrotron Radiat., 8, 1221-1228 (2001).
- B. Yang et al., Proc. IBIC2016, Barcelona, Spain, TUPG66, (2016)
- K. P. Wootton, et al., <u>Phys. Rev. Lett. 109, 194801 (2012)</u>.
- K. P. Wootton, et al., <u>Phys. Rev. ST Accel. Beams 17, 112802 (2014)</u>.
- K. P. Wootton, Proc. IBIC2015, paper TUCLA01, pp. 278-282, 2015.

