
TUNE COMPUTATION VIA MODEL FITTING TO SWEPT MACHINE
RESPONSE MEASUREMENT

M.G. Abbott∗, G. Rehm, Diamond Light Source, UK

Abstract
At Diamond Light Source we compute the horizontal and

vertical tunes by fitting a simple multi-pole resonator model
to the measured electron beam frequency response. The
transverse (and longitudinal) tune response is measured by
sweeping an excitation across the range of possible tune
frequencies and synchronously measuring the IQ response.

The multi-pole resonator model is a good fit to the
measured behaviour, but the fitting process is surprisingly
challenging. Problems include noisy measurements, very
complex beam responses in the presence of increasing
chromaticity, poor data when the beam is close to instability,
and a number of challenges with the stability of the
algorithm.

The tune fitting algorithm now in use at Diamond has been
developed and refined over many years. It is finally stable
enough to work reliably throughout most beam operating
conditions. The algorithm involves alternating peak finding
and non-linear fitting, with a fairly naive mathematical
approach; the main focus is on providing reliable results.

INTRODUCTION
The synchrotron beam has natural frequencies of oscilla-

tion in the horizontal, vertical, and longitudinal directions:
transverse “betatron tunes” and longitudinal “synchrotron
tunes”. The precise betatron tune frequencies are of
considerable interest to machine physicists, and need to be
measured at various stages during machine operation.

At Diamond Light Source the storage ring configuration
has evolved into a state where movement of the tunes (driven
mainly by insertion device movements affecting machine
optics) can result in loss of beam lifetime and injection
efficiency, so it is necessary to actively measure and correct
the betatron tunes in both transverse axes. This therefore
requires a reliable measurement of the tunes, during both
machine startup conditions and normal operation.

A complicating factor when computing the tunes arises
from interference between transverse and longitudinal
oscillations, depending on the chromaticity settings of the
synchrotron. This interaction can result in significant side-
lobes at (roughly) multiples of synchrotron frequency offset
either side of the main tune measurement. Depending on
machine conditions it can become difficult to identify the
central tune frequency. This is addressed by the process
described here, but there remain some operating conditions
that can be surprisingly difficult to interpret.

We are able to take advantage of phase and magnitude
measurement to fit a reasonably sophisticated model.

∗ michael.abbott@diamond.ac.uk

Figure 1: Illustration of swept response, showing magnitude
(in arbitrary units) and phase (in degrees) against fractional
tune, and the corresponding complex IQ measurements.
This sweep shows a typically complex response with
multiple lobes, illustrating the problem of identifying the
true tune in the presence of large synchrotron side-lobes.

RESPONSE MEASUREMENT
Tune measurement at Diamond is integrated into the

operation of the Multi-Bunch Feedback (MBF) system [1],
and is done by exciting the beam with a swept sinusoidal
oscillation and synchronously measuring the response. The
result is a complex number z(ω) at each sampled frequency
ω representing the phase and magnitude of the machine
response, computed thus:

z(ω) =
∑

t∈dwell(ω)

e−iKωt x(t)

where dwell(ω) is typically 100 turns per frequency step,
and K is a frequency scaling factor.

Because measurement and stimulus are both confined to
a single location in the machine, we are only able to see the
fractional part of the machine tune, but in practice this is the
only part that needs to be measured. For convenience, all
frequencies ω are scaled to fractions of machine revolution
frequency.

When using the MBF system for tune sweeping we have
a number of options, including which bunches to excite and
measure, which overall phase advance between bunches
to apply (this is referred to as the “mode”), strength of
excitation, and the dwell time at each frequency. At present
we excite and measure all bunches at a mode of 80, and
typically sweep 4096 points of a frequency range of 0.1
around the nominal tune point over a period of about 780 ms.
From this the tune measurement is updated at just over 1 Hz.

A typical measurement is shown in Fig. 1.
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MODELLING MEASURED RESPONSE
The swept response is modelled by fitting a simple multi-

pole resonator model. Starting with the motivating example
of a single narrow band resonator, this can be described
by the following differential equation (with driving term y,
resonator bandwidth ν, nominal centre frequency ω0):

y = Üx + 2ν Ûx + ω2
0 x .

The Laplace transform of this gives us the following
equation (where X , Y are the Laplace transforms of x, y, and
defining ω2

c ≡ ω2
0 − ν

2):

Y = (s2 + 2νs + ω2
0)X = ((s + ν)2 + ω2

c)X .

Noting now that the quadratic term in s has zeros at s =
−ν ± iωc , the corresponding system response X/Y can be
written as (writing a0 ≡ 1/2iωc , b0 ≡ −ν + iωc):

X
Y
=

1
(s − b0)(s − b∗0)

=
a0

s − b0
−

a0
s − b∗0

.

At this point we can make some simplifying assumptions:
the measured swept response covers a narrow range around
ωc , and ν ≪ ωc (i.e., our Q factor is large). In this case we
can ignore the a0/(s − b∗0) term and write our model M as:

M(ω) =
X
Y
(iω) ≈

a0
iω − b0

=
a
ω − b

where a ≡ −ia0 and b ≡ −ib = ωc + iν. We work with this
latter form, which we now regard as a “single pole resonator”,
and we allow a to be a free parameter to represent other
sources of scaling and phase variation which we will want
to capture.

Ignoring the small offset between damped frequency ωc
and nominal frequency ω0, the following parameters can be
computed from a single pole (a, b):

• centre frequency = re(b)
• peak width = im(b)
• peak “power”

∫
R
|M(ω)|2dω = |a|2/im(b)

• phase = ∠ia
Note that the peak area

∫
R
|M(ω)|dω diverges, and

the “power” (integral of magnitude squared) above is a
purely formal quantity, in particular peak powers cannot
meaningfully be added together.

Finally we model the full multi-pole resonator model
as a sum of N single pole resonators (an, bn)n∈1..N , plus
a correction factor c to capture any background offset:

M(ω) =

N∑
n=1

an
ω − bn

+ c .

This is a rational function in ω, which is a natural class of
functions in control theory, and this simple model turns out
to be a remarkably good fit to measured tune sweeps.

PEAK FITTING ALGORITHM
The input to the tune fitting algorithm is a pair of equal

sized waveforms ( ®ω, ®z), where ®ω is the swept frequency
scale and ®z is the measured frequency response for each
corresponding frequency as a complex number.

One peak at a time is fitted to the measured data until
a fitting step fails, or until a configured number of peaks
has been reached. The peak fitting algorithm consists of the
following steps:

1. Set initial model M := M0 with N = 0, c = 0.
2. Compute residue ®r = ®z − M( ®ω).
3. Find largest peak in |®r |2 after smoothing, find region

around this peak.
4. Compute an initial (a, b) fit to ®r around discovered peak

and extend model with M ′ = M + (a, b).
5. Compute refined model M ′′ from initial model M ′

using Levenberg-Marquardt optimisation
6. Assess M ′′:

• If M ′′ fails assessment then exit with current
model M .

• If N + 1 = Nmax then exit with new model M ′′.
• Otherwise assign M := M ′′, increment N , go

back to step 2.
At this point the peaks from the successful model are

sorted into ascending order of centre frequency and are
handed over to the final tune computation stage.

Peak Discovery and Initial Fit
Figure 2 shows the initial step of peak discovery. The

residue ®r is smoothed and decimated (we simply average
in bins of 32 samples), the second derivative is computed,

Figure 2: Initial peak discovery: the power spectrum is
smoothed and decimated, and the strongest peak is identified
by finding the frequency with the strongest curvature (shown
circled in red at bottom). This is then used to find the range
for the initial fit (highlighted in red in the centre graph).
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and the most negative point (point of strongest curvature)
is taken as the centre of the next peak to be fitted. This
starting point is then used to discover an interval I spanning
the discovered peak.

Next it is important to create an initial fit to this peak
to properly prime the refinement step. We would like to
minimise the error term

∑
i∈I |ri − a/(ωi − b)|2 over the

interval I, but this is a non-linear problem. Multiplying
through by ®ω − b and a weighting term ®w we get the
minimisation problem

minimise
∑
i∈I

|wi(a + bri − rω)|2

which is linear in a and b and can therefore be solved directly.
We set wi ≡ |ri |2 to partially cancel out the change in
weighting and to improve focusing of the fit on the centre of
the peak.

This newly fitted peak is added to the model, the c term
is recomputed, and the model is refined with the next step.

Levenberg-Marquardt Optimisation
The Levenberg-Marquardt (LM) algorithm [2–4] is an

iterative non-linear least squares minimisation process. This
algorithm takes an initial starting model and refines it
iteratively to reduce the fitting error. We run a few rounds of
this algorithm after adding each new peak to improve the fit.

The algorithm acts on the measured machine response
( ®ω, ®z) and parameters β = ((an, bn)n∈1..N , c) defining the
model M(ω) = M(β;ω) to be refined. Each step of the
algorithm computes a new β′ = LM(β; ®ω, ®z) to reduce the
error term

χ2(β) =
∑
i

|zi − M(β;ωi)|2

σ2
i

.

Ideally σi should be the measurement error for ®zi and
should be used to guide termination of the LM process, but
at present we ignore this term. An estimate for σ can be
probably be recovered from the tails of the swept response,
but this has not yet been investigated.

Computing β′ requires the calculation of the partial
derivative terms ∂M(β;ω)/∂β, but fortunately these are
easy to compute:

∂M
∂an
=

1
ω − bn

,
∂M
∂bn
=

an
(ω − bn)2

,
∂M
∂c
= 1 .

Behaviour of LM Refinement This algorithm is very
sensitive to initial conditions, and can produce some
unhelpful results: the biggest problem is a tendency for
poles to wander and interfere with one another. This problem
becomes more pronounced as more poles are added, and in
general it is difficult to fit all three peaks reliably.

Figure 3 shows the process of successful incremental peak
fitting and refinement. Figure 4 shows the more complex
case of failing when adding a third peak: in this case we see
the importance of the initial conditions.

Figure 3: Successful model refinement: fitting three poles
one by one. The red curve shows the result after refinement,
the thin blue line is the initial fit, and the dashed lines show
intermediate stages. It is possible to see from this figure
that the first fitted pole moves from one lobe to another.

Figure 4: Failed model refinement. On the left the blue
curve shows the initial fit, and the top right shows the
three separate components of this fit: we can see that
the small peak has been chosen. On bottom right this
peak has moved and broadened to join the central large
peak: this fit is rejected by the model assessment step.

Model Assessment
It is important to evaluate the success of the tune fitting

process, so after each LM optimisation step the entire model
is assessed. This involves the following checks, if any of
them fail the entire fit is discarded:

• Peak width. The peak width is checked against
configured minimum and maximum limits. This
catches peaks that have run away into the background
(very broad peaks), peaks that have got caught on local
noise (very narrow peaks), and peaks that have gone
negative.

• Peak position. Occasionally the centre of a peak will
wander out of the swept data window, and so must be
treated as invalid.

• Peak closeness. If two peaks are too close together this
is a clear sign of peak merging, and so the model can
be discarded.

• Peak merging. Peaks with opposing phase are also
a sign of peak merging and cause the model to be
rejected.
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Figure 5: This figure show a successful fit of a three
pole model to a typical tune sweep. The two main peaks
are fitted very closely, the third peak looks slightly off,
while there is a fourth peak which has not been attempted.
From this model we can measure a tune of 0.2768 with
a phase of 159° (seen through the MBF feedback filter).

Computing the Tune
The original motivation for fitting as many peaks as

possible was to find a way to reliably identify the true “tune”.
In practice it seems that simply taking the peak with the
largest “power” is sufficient. From the model we can now
read out the tune, its phase and bandwidth or damping factor,
and the synchrotron side bands, if they were successfully
fitted.

Figure 5 shows the final result of a successful fit to the
data captured in Fig. 1 and refined in Fig. 3.

Figure 6: Three challenging fits: magnitude and IQ shown.
The first sweep shows strong ringing from sweeping a narrow
resonance too quickly, but the fit is successful. The second
sweep shows the limit of tune detection, but is again success-
ful. The third sweep shows failure to fit the third important
lobe: in this case feedback is flattening the tune response.

Figure 7: Tune sweeping measurement is normally combined
with bunch-by-bunch feedback. This figure shows the impact
of the feedback intensity on the tune sweep: increasing
feedback flattens the response and makes the fit less reliable.

CHALLENGES
The main challenge has been to develop an algorithm that

is robust enough to produce acceptable results throughout
the entire operating range of the synchrotron. In particular,
tune sweeps look completely different at low and high beam
currents, and high chromaticity enhances the synchrotron
sidebands.

At very low beam currents the tune resonance can become
extremely narrow. The main impact of this is “dragging” of
the resonance with the sweep, producing extra oscillations
on the swept response. This can be avoided with a narrower
or slower sweep.

A small selection from some more challenging sweeps is
shown in Fig. 6. In all three cases the data can be improved
by changing the sweep conditions. Figure 7 shows the
impact of correcting for multi-bunch instabilities on response
measurement.

CONCLUSIONS
This algorithm has been developed and has evolved over

many years. Throughout the main problem has been to
distinguish the true “tune” peak from its neighbours. Now
with a reasonably reliable algorithm producing a detailed
and accurate fit (when successful) we are able to measure the
tune for long periods without “hopping” to adjacent peaks.

Problems still remain with challenging machine con-
ditions, particularly when very strong bunch-by-bunch
feedback is required, when operating at extremely low beam
currents, or at very high chromaticities. However for normal
operation this algorithm is very reliable and is able to operate
unattended for long periods.

The code for the tune fitting algorithm is written in Python
and can be obtained by contacting the author.
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