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Abstract
Machine learning (ML) based virtual diagnostics predict

what the output of a measurement would look like when
that diagnostic is unavailable [1]. This is especially useful
for cases when a particular measurement is destructive. In
this paper, we report on the application of ML methods for
predicting the longitudinal phase space (LPS) distribution
of the FACET-II linac operating in two-bunch mode. Our ap-
proach consists of training a ML-based virtual diagnostic to
predict the LPS using only nondestructive linac and e-beam
measurements as inputs. We validate this approach with a
simulation study including the longitudinal smearing of the
bunch profile which occurs as a result of measuring the LPS
using a Transverse Deflecting Cavity (TCAV). We find good
agreement between the simulated LPS as measured by the
TCAV and the prediction from the ML model. We discuss
how the predicted LPS profile compares to the actual beam
LPS distribution extracted from simulation and how the res-
olution limits of the TCAV measurement are reflected in the
ML prediction. We discuss important challenges that need
to be addressed, such as quantifying prediction uncertainty,
for this diagnostics to be implemented in routine accelerator
operation. Finally, we report on the use of the ML-based
prediction in conjunction with a standard optimizer for tun-
ing the accelerator settings to generate a desired two-bunch
LPS profile at the exit of the FACET-II linac.

INTRODUCTION
The main running configuration for PWFA experiments

at FACET-II will involve accelerating two bunches from
the photocathode to the interaction point (IP) at the plasma
entrance with specific longitudinal profile properties and
drive-witness bunch separation. For a full description of
PWFA experiments at FACET-II see Ref. [2]. The major
goals for the PWFA experiments will be to demonstrate
pump depletion of the 10-GeV drive beam and acceleration
of the witness beam to approximately 20-GeVwhile preserv-
ing good beam quality. The figures of merit for the beam
quality will be preservation of energy spread and emittance
of the witness bunch, and these will need to be measured on
a shot-to-shot basis for both the incoming distribution and
the accelerated witness beam. To this end, accurate measure-
ments of the bunch profile entering the plasma are essential
for the success of the experimental campaign. Previous work
has demonstrated the feasibility of using Machine Learning
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(ML) models as virtual diagnostics to predict the LPS distri-
bution of FACET-II single bunch operation (in simulation)
and at LCLS (in experiment) [3].

At FACET-II we plan to measure the LPS distribution
of the electron bunch at the entrance of the plasma with
an X-band TCAV operating at a peak voltage of 20 MV.
This introduces a challenge for accurately characterizing the
longitudinal bunch profile, as the accelerator is expected to
produce very short bunches (σz ∼ 1 µm) beyond the TCAV
resolution. In this work we examine the effect of the TCAV
measurement on the performance of the ML-based virtual
diagnostic and discuss its application in the FACET-II two-
bunch operation mode.

In the following section we describe the TCAV measure-
ment of the two-bunch configuration at FACET-II and com-
pare the measured LPS distributions with the actual LPS
which we extract directly from particle tracking simulations.
The results show very good agreement between the LPS
distribution measured by the TCAV and the LPS distribution
predicted by the ML model. Due to TCAV resolution limits
there is some discrepancy when we use the projection of the
measured LPS distribution to infer the current profile at the
entrance of the plasma. This discrepancy affects the accuracy
of the ML-based virtual diagnostic, which predicts the LPS
using the output of the TCAV measurement as training data.
We present results from 3,125 simulations of the FACET-II
linac from the exit of the injector to the end of the linac
with induced jitter of key accelerator and beam parameters
described in Table 1. The simulations include longitudinal
space charge, incoherent and coherent synchrotron radiation
and wakefields and are performed using the Lucretia particle
tracking code [4].

SIMULATED TCAV MEASUREMENTS OF
LONGITUDINAL PHASE SPACE AT

FACET-II
Two-bunch Simulations

Three examples of the simulated LPS profiles as measured
by the TCAV are shown in in Fig. 1 with corresponding cur-
rent profiles and prediction from the ML model. The three
distributions shown represent an under-compressed, over-
compressed and nearly fully-compressed (nominal) beam
respectively. Note that the head of the bunch is on the left
of the images. The ML model we used was a three-layer
fully-connected neural network with (500,200,100) neurons
in each successive hidden layer and a rectified linear unit ac-
tivation function for each neuron. The network was trained
using the open source ML library Tensorflow, and two sepa-
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Figure 1: Example shots from numerical simulation of the FACET-II two-bunch operation mode with nominal jitter values
given in Table 1. The ML model accurately predicts the LPS distribution including chirp, time separation and bunch charge
ratio. The current profile matches well with what is measured on the TCAV. As shown in Fig. 2 this may deviate from the
true current profile at the IP due to resolution limits of the TCAV for some high current shots.
rate models with the same architecture were trained for the
2D LPS prediction and the 1d current profile prediction. As
evidenced Fig. 1, we see very good agreement between the
LPS profiles measured by the TCAV and those predicted by
the ML model. There is also good agreement between the
ML-predicted current profiles and those extracted from the
TCAV image. The variety of LPS images input to the ML
model for training result from the expected shot-to-shot-jitter
of linac and e-beam parameters outlined in the FACET-II
Technical Design Report (TDR, see Table 1) [5]. The nomi-
nal settings produce a ∼150 µm bunch spacing, a 2:1 ratio
between the peak currents and a 3:1 ratio in the bunch charge
between the drive and witness beam. The variation in bunch
profile from shot-to-shot jitter results in a 9 % rms variation
in the drive-witness charge ratio, a 30 µm rms variation in

Table 1: Linac and e-beam parameters scanned in the 55 sim-
ulations of the FACET-II accelerator. The ranges are chosen
closely based on the jitter parameters from the FACET-II
TDR [5]. The diagnostics fed to the ML model include ran-
dom errors introduced artificially to approximate the mea-
surement accuracy present in the accelerator.

Simulation Parameter Scanned Range
L1 & L2 phase [deg] ± 0.25
L1 & L2 voltage [%] ± 0.1
Bunch Charge [%] ± 1
Input to ML model Accuracy
L1 & L2 phase [deg] ± 0.25
L1 & L2 voltage [%] ± 0.05
Ipk at BC (11,14,20) [kA] ± (0.25,1,5)
Beam centroid BC (11,14) [m] N/A

the bunch separation and a 36 % rms variation in the ratio of
the peak current from the nominal settings. These parameter
variations are well predicted by the ML model.

As discussed above, the FACET-II two-bunch configura-
tion operates at near full compression and will generate very
short bunches with rms sizes of a few µm putting them at
the limit of the TCAV resolution. This means the values
measured for the peak current on the TCAV sometimes differ
from the values at the IP and therefore so will the prediction
from the ML model, which is trained using TCAV measure-
ments as inputs. We examine this discrepancy in detail in
Fig. 2 where we show the same current profiles from the
three example shots in Fig. 1 as measured on the TCAV and
compare this with the current profile we calculate from the
distribution at the IP binned at 0.25 µm per pixel. There
are a few observation we can make by looking at Fig. 2
(a)-(c). The first is that the peak current values measured
by the TCAV under-estimate the true value for shots with
peak current greater than ∼ 35 kA. We note that these high
peak currents are greater than those which we plan to de-
liver for the two-bunch pump depletion experiments outlined
in Ref. [2]. Nonetheless, close to the nominal settings (as
shown in Fig. 2(c)) the correct value of the ratio of the peak
currents may be under-estimated if the witness bunch current
profile is poorly resolved by the TCAV measurement. To
quantitatively understand the limits imposed by the TCAV
measurement we can estimate the longitudinal resolution as
follows:

σz =
Ee

eVrfkrf | sin∆ψ |

√
σ2
S
+ βSϵ

√
βT βS

(1)
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Figure 2: (a)-(e) Single shot comparisons of the current profiles measured by the TCAV and calculated from the macroparticle
distribution in simulation dumped at the IP. The shots match those displayed in Fig. 1. (d)-(f) Comparison of the peak
current measured by the TCAV vs. at the IP for the drive and witness beam. The plots show that the TCAV measurement
underestimates the peak current value and smears out some details of the current distribution for the very short bunches
which will be produced at FACET-II.

where Ee is the electron beam energy Vrf, krf is the TCAV
voltage and wavenumber, ∆ψ is the phase advance between
the TCAV and the measurement screen, σS is the resolu-
tion of the screen (we assume 4 µm for a transition radiation
target), βS is the beta function at the screen ϵ is the beam
emittance and βT is the beta function at the TCAV. The
∼35 kA max resolvable peak current come from the con-
strained optimization of the beta function at the screen and
at the TCAV while meeting the beam stay-clear constraints
in the experimental area and mitigating loss of resolution
from chromatic errors and emittance growth in the transport.
For a 10 µm normalized emittance at 10 GeV with a phase
advance of 3π/2 between TCAV and screen, the optimized
values of βT and βS are 107 and 6.5 m give a resolution of
σz,min = 4.58 µm. Given a Gaussian drive bunch at 1.5 nC
charge this corresponds to Imax = 39.2 kA which is in rea-
sonable agreement with the trend shown in the scatter plot
in Fig. 2(d).

For shots that are not beyond the TCAV resolution we
can see from Fig. 2(d)-(e) that we can correlate the TCAV
measured peak current with the peak current at the IP. These
shots are mostly in the region defined by Ipk,drive < 30 kA

and Ipk,wit < 16 kA as measured on the TCAV. Some shots
in this region still show large discrepancy between the TCAV
current profile and that measured at the IP and these represent
the spiky ‘double-horn’ type distributions in the drive and
witness beam exemplified in Fig. 2(a).

One of the challenges this particular virtual diagnostic
faces is to flag wether or not a single shot falls within the
‘high-current’ region beyond the TCAV resolution. Accu-
rately determining this on a shot-to-shot basis will provide
added assurance that the current profiles predicted by the ML
model map to the electron beam current profile at the IP. One
potential method to address this challenge would be to use
a secondary non-destructive diagnostic in tandem with the
ML prediction that is sensitive to changes in the peak current
beyond the TCAV resolution. This would help identify the
region in which a given shot falls. The secondary diagnostic
may be a mid-IR and/or Thz spectrometer similar to those
described in Ref. [6, 7] and could use diffraction or bend
radiation as a non-destructive source. It may also be possi-
ble to implement a simple upgrade (adding an appropriate
set of spectral filters) to the existing radiation-based bunch
length monitor at the exit of the final bunch compressor (see
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Ref. [8]) to mimic a more complicated spectroscopic mea-
surement. This would allow us to measure the integrated
radiation signal over a given frequency band proportional
to the bunch length for the high peak current shots. These
options are currently under study and details on progress
will be reported in future work.

OPTIMIZATION OF LPS PROFILE USING
ML PREDICTION

One application of an accurate ML based virtual diagnos-
tic for predicting the output LPS distribution is tuning of
accelerator parameters to tailor the LPS to a desired distri-
bution. This can be done in two different ways:

• Using a ML-based inverse model to predict the ma-
chine settings required to generate a distribution (and
potentially use a conventional optimizer starting from
the initial ML guess), or

• Using a conventional optimizer with the ML-prediction
of the LPS as its input and the accelerator settings as
output.

One advantage of both approaches for online optimization
of the accelerator compared to using an online simulation
of the accelerator (e.g. using a tracking code [9]) is the
speed with which ML models can produce predictions (∼ms
timescale). This can be orders-of-magnitudes faster than
running start-to-end tracking simulations, which can take
seconds or minutes to run depending on the physics effects
which are included in the code [10].

Figure 3: (Top Row) Target LPS profile, the LPS prediction
at one iteration during the optimization of settings and the
LPS prediction with the final optimized settings. (Bottom
row) Trajectory of settings suggested by the Nelder-Mead
optimizer with a ML-based prediction of the LPS as inputs.

The first approach was prototyped at LCLS as described
in Ref. [11] with successful results. Here we apply the sec-
ond approach to the FACET-II two-bunch operation case. In
order to use the ML model in an iterative feedback which
acts only on controllable machine parameters we re-train

the virtual diagnostic using only L1 and L2 amplitudes and
phases as inputs to the model. A cost function is then defined
using the structural similarity index between the target and
the given LPS profile [12] and is minimized using a Nelder-
Mead downhill simplex algorithm, which is called iteratively
until a given convergence criterion is met. We can see from
the bottom row of Fig. 3 that the final solution for the param-
eters is very close to the target parameters which generated
the phase space distribution and the achieved distribution
is very similar to the target. Another important feature of
this example is that the starting point for the neural network
optimization lies outside the training range for both the L1-
2 amplitudes and phases, whose set points were -19.2 and
-38.35 degrees for the phases and zero for the amplitude.
Notably, the optimization algorithm is still robust when ini-
tialized with starting points outside of the training data set.
We can also conclude from the example that the ML model
is able to successfully interpolate within the training set, as
the settings suggested by the optimizer and the predictions
returned by the ML model are not limited to the discretized
points sampled by the numerical simulation inputs supplied
as training data.

Robust implementation of the ML-based LPS prediction
model in tandem with a conventional optimizer requires an
associated estimate of the uncertainty of each prediction as
well as the risk involved in making each adjustment in set-
tings to regular accelerator operations. Model ensembling,
MC dropout techniques, and Bayesian neural networks are
all being considered as possible options for assessing the pre-
diction uncertainty on a shot-to-shot basis. These questions
will be addressed in future work.

CONCLUSION
We have discussed the application of using ML-based

methods to predicting the LPS of the FACET-II accelerator
non-destructively and on a single-shot basis for the two-
bunch operation mode. We have also explored using these
predictive models with optimization algorithms to tailor the
LPS distribution. Compared to the feasibility study pre-
sented in Ref [3] we have examined in detail the impact
of the TCAV measurement on the accuracy of the virtual
diagnostic prediction, especially for shots which lie beyond
the TCAV resolution. We have found that for the existing
FACET-II configuration there is very good agreement be-
tween the measured TCAV LPS profiles and those predicted
by the ML-based virtual diagnostic. For the current pro-
file, the resolution limits of the TCAV result in a smeared
out profile, with values of the peak current deviating from
those extracted directly from the particle distribution in sim-
ulations. The deviation is most severe for very high peak
current shots with Ipk,drive > 30 kA and Ipk,wit > 16 kA. We
have suggested flagging these shots with additional radiation-
based diagnostics which would be sensitive to changes in the
bunch profile beyond the TCAV resolution. Incorporating
such diagnostics in the FACET-II beamline is planned and
the results will be reported on in the future.
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