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Abstract
The Large Hadron Collider (LHC) Schottky monitors

have been designed to measure various parameters of rel-
evance to beam quality, namely tune, momentum spread
and chromaticity. We present another application of this
instrument - the evaluation of longitudinal bunch profiles.
The relation between the distribution of synchrotron am-
plitudes within the bunch population and the longitudinal
bunch profile is derived from probabilistic principles. Our
approach, limited to bunched beams with no intra-bunch
coherent motion, initially fits the cumulative power spectral
density of acquired Schottky spectra with the underlying dis-
tribution of synchrotron amplitudes. The result of this fit is
then used to reconstruct the bunch profile using the derived
model. The obtained results are verified by a comparison
with measurements from the LHC Wall Current Monitors.

INTRODUCTION
The Large Hadron Collider (LHC) transverse Schottky

system, whose main objective is to provide the beam op-
erators with non-invasive, bunch-by-bunch tune and chro-
maticity measurements was commissioned in 2011 [1]. In
the meantime, the system has undergone major upgrades in
order to improve signal quality [2]. Still, although qualita-
tively its chromaticity estimates seem to agree with trends
from other measurement techniques (as verified in dedicated
experiments), the quantitative discrepancies observed still
need to be fully understood [3]. Studies are therefore under-
way in order to better understand the spectra obtained. will ,
under the assumption that there is no coherent intra-bunch
motion. It should be noted, however, that the LHC Schottky
monitors are designed for transverse measurements, and as
such are not optimised for measurements in the longitudinal
plane.

LONGITUDINAL BUNCH PROFILE
In hadron machines such as the LHC, where radiation

losses are small, the RF phase difference, ∆ϕRF , between a
given particle within the bunch and the synchronous particle
obeys the pendulum equation [4, Eq. (9.51)]

d2∆ϕRF

dt2 + ω2
s0 sin (∆ϕRF ) = 0 (1)

where ωs0 is the nominal synchrotron frequency.
For RF harmonic h, revolution frequency ω0 and time am-
plitude (maximum time difference between a given particle
and the synchronous particle) of synchrotron oscillations τ̂,
we have that the particle’s synchrotron frequency is given

by:
ωs =

π

2K
[
sin

(
hω0τ̂

2

)] ωs0, (2)

where �∆ϕRF = hω0τ̂ is the RF phase amplitude of syn-
chrotron oscillations and K ([0,1]) → [π/2,∞] is the com-
plete elliptic integral of the first kind [5, p. 590]. This comes
from the general theory of an arbitrary-amplitude pendu-
lum [6].

From [7] we know that the time difference τ between a
particle performing synchrotron motion and the synchronous
particle is described by a simple harmonic motion, i.e.:

τ = τ(τ̂, ϕs) = τ̂ cos (ωst + ϕs) . (3)

The longitudinal bunch profile can be interpreted as the
probability distribution of τ. We shall denote this distribu-
tion by B(τ). The assumption of no coherent intra-bunch
motion implies that the distribution of initial synchrotron
phases, ϕs, is uniform and independent of the distribution
of synchrotron amplitudes τ̂. Furthermore, under stationary
conditions, the longitudinal bunch profile is independent of
time. Therefore, the probability of finding a particle with
time difference τ with respect to the synchronous particle
depends only on its amplitude of oscillation τ̂:

B(τ) =

∫ ∞

0
gτ,τ̂(τ, τ̂)dτ̂ =

∫ ∞

|τ |
gτ,τ̂(τ, τ̂)dτ̂,

where gτ,τ̂(τ, τ̂) is the joint probability density of a parti-
cle having amplitude τ̂ and time difference τ. The second
equality comes from the fact, that gτ,τ̂(τ, τ̂) = 0 for |τ | > τ̂.
Derivation of gτ,τ̂(τ, τ̂) is not straightforward, as τ and τ̂ are
not independent, but it can be derived from the joint distri-
bution of initial synchrotron phases and amplitudes gφs ,τ̂ .
We can write

gφs ,τ̂ (ϕs, τ̂) = gφs (ϕs) gτ̂ (τ̂) =
gτ̂ (τ̂)

2π
,

as these random variables are independent and ϕs is uni-
formly distributed. In addition, let us define the transforma-
tion

u = (u1,u2) : (ϕs, τ̂) 7→ (τ, τ̂)

where u1 is defined by Eq. (3) and u2 is the identity function
of τ̂. The relationship between the joint distributions of two
sets of random variables related by a known transformation
function is given in [8, p. 201]. Using this, we obtain

gτ,τ̂(τ, τ̂) =
2gφs ,τ̂ (ϕs, τ̂)
√
τ̂2 − τ2

=
gτ̂(τ̂)

π
√
τ̂2 − τ2

8th Int. Beam Instrum. Conf. IBIC2019, Malmö, Sweden JACoW Publishing
ISBN: 978-3-95450-204-2 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2019-MOCO03

Machine measurements and novel techniques
MOCO03

45

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



which finally enables us to write

B(τ) =

∫ ∞

|τ |

gτ̂(τ̂)

π
√
τ̂2 − τ2

dτ̂. (4)

Equation (4) allows us to calculate the longitudinal bunch
profile knowing the distribution of synchrotron amplitudes.
Conversely, if we are given the bunch profile, we can ex-
tract gτ̂ by numerically solving an integral equation [9]. In
addition, as the synchrotron amplitudes are related to the
synchrotron frequencies by Eq. (2), knowing one of these
distributions allows us to determine the other two, as shown
in Fig. 1.

Figure 1: Top: typical bunch profile at flattop, measured by a
Wall Current Monitor; Middle: synchrotron amplitude distri-
bution derived from Eq. (4); Bottom: synchrotron frequency
distribution derived from Eq. (2).

SCHOTTKY SPECTRUM
The Schottky spectrum in the vicinity of a revolution

harmonic consists of three regions of interest: the longitu-
dinal/central part and the two transverse sidebands. Each
region is composed of a series of Bessel satellites (Jp) of
finite width due to the presence of many particles with differ-
ent synchrotron frequencies (see as example Fig. 4). In the
scope of this paper we are only interested in the longitudinal
part of the spectrum. The intensity signal due to a single-
particle i, in the vicinity of the n-th revolution harmonic,
can be written in the following form [7]

si(t) ∝ ℜ

(
∞∑

p=−∞

jpJp (nω0τ̂i) e j(nω0t+pωsi
t+pφsi )

)
. (5)

Let’s now consider the Power Spectral Den-
sity (PSD), P(ω), of a pick-up signal s(t) =

∑N
i si(t),

which is the sum of the individual contributions of N
particles. By examining Eq. (5) we conclude that P(ω) is
non-deterministic, but depends on the random synchrotron
phases ϕsi . We shall then start by deriving the expected
value of the PSD

⟨P (ω)⟩ = ⟨F (ω) F∗ (ω)⟩ , (6)

where F (ω) =
∫ ∞

−∞
s(t)e−jωtdt is the Fourier transform

of s(t) and F∗(ω) is its complex conjugate. Since the Fourier
transform is linear, the previous equation can also be written
in the following form

⟨P (ω)⟩ =

〈[
N∑
i=1

Fi(ω)

]
×

[
N∑
i=1

F∗
i (ω)

]〉
=

=

〈
N∑
i=1

N∑
j=1
j,i

Fi(ω)F∗
j (ω) +

N∑
i=1

Fi(ω)F∗
i (ω)

〉
,

where Fi (ω) =
∫ ∞

−∞
si(t)e−jωtdt.

Since the expected value is a linear operator, we can write

⟨P (ω)⟩ =

N∑
i=1

N∑
j=1
j,i

〈
Fi(ω)F∗

j (ω)
〉
+

N∑
i=1

〈
Fi(ω)F∗

i (ω)
〉
=

=

N∑
i=1

N∑
j=1
j,i

〈
|Fi(ω)| |F∗

j (ω)| cos
[
θi(ω) − θ j(ω)

]〉
+

+

N∑
i=1

〈
Fi(ω)F∗

i (ω)
〉
,

(7)
where θi(ω) = pi(ω)

(
ϕsi + π/2

)
is the Fourier phase (see

Eq. (5)) and the Bessel line index pi (ω) is given by

pi (ω) =
ω − nω0
ωsi

.

For values of ω such that pi (ω) is not an integer we have
Fi (ω) = 0.

The assumption of purely incoherent synchrotron motion
ensures that ϕsi is uniformly distributed over the unit cir-
cle. This distribution has several interesting properties [10],
among which we will mention two. Let X be a random vari-
able uniformly distributed over the unit circle. Firstly, for
any non-zero integer k and arbitrary constant α, we have
that k X + α is also uniformly distributed over the unit cir-
cle. This implies that θi(ω) is uniformly distributed for
all pi(ω) , 0. Secondly, let Y be any random variable
on the unit circle. Then, X + Y is uniformly distributed
over the unit circle. Consequently θi(ω) − θ j(ω) is uni-
formly distributed. Moreover, values of θi(ω) are indepen-
dent from those of |Fi(ω)|. This fact needs clarification, as
both depend on ω via pi(ω). Nevertheless, as discussed
before, pi(ω) takes only integer values and therefore has
no influence on the probability distribution of θi(ω). As a
consequence, θi(ω) and |Fi(ω)| are independent. We then
have
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N∑
i=1

N∑
j=1
j,i

〈
|Fi(ω)| |F∗

j (ω)| cos
[
θi(ω) − θ j(ω)

]〉
=

=

N∑
i=1

N∑
j=1
j,i

〈
|Fi | |F∗

j (ω)|
〉 〈

cos
[
θi(ω) − θ j(ω)

]〉︸                      ︷︷                      ︸
0

= 0,

as θi(ω) − θ j(ω) is uniformly distributed and∫ 2π
0 cos(x)dx = 0. We can conclude that

⟨P (ω)⟩ =

N∑
i=1

〈
Fi(ω)F∗

i (ω)
〉
, (8)

so the expected PSD is just the sum of single particle
contributions.

MATRIX FORMALISM
Based on what was explained in the previous section,

we may assume, that the time averaged cumulative power
spectrum of N particles is equal to the sum of the individual
particle spectra. From Eq. (5) we know, that differences in
the individual particle spectra depend only on the particle’s
synchrotron amplitude, as synchrotron frequency can be
expressed as a function of the amplitude (Eq. (2)). We do
not take synchrotron phase into consideration, as phase will
not influence a single particle’s spectrum. Therefore the
Schottky spectra are explicitly related to the distribution of
synchrotron amplitudes.

Let us assume that we know the distribution g(τ̂) of syn-
chrotron amplitudes amongst the particles. We may then
calculate ⟨P(ω)⟩, the power at a given frequency, as:

⟨P(ω)⟩ =
∫ ∞

0
g(τ̂)P(ω, τ̂)dτ̂, (9)

where P(ω, τ̂) is the PSD at frequency ω of a particle with
synchrotron amplitude τ̂. This should be seen as the contin-
uous analogue of Eq. (8). If we discretise g(τ̂), then Eq. (9)
takes the form:

⟨P(ω)⟩ =
∞∑
i=0

g(τ̂i)P(ω, τ̂i).

The above equation can be expressed in terms of discrete
frequencies, written in matrix form as:

P(ω1, τ̂1) · · · P(ω1, τ̂n)
P(ω2, τ̂1) · · · P(ω2, τ̂n)
...

. . .
...

P(ωm, τ̂1) · · · P(ωm, τ̂n)

︸                                 ︷︷                                 ︸
M

·


g(τ̂1)
g(τ̂2)
...

g(τ̂n)

︸  ︷︷  ︸
A

=


⟨P(ω1)⟩
⟨P(ω2)⟩
...

⟨P(ωm)⟩

︸       ︷︷       ︸
S

.

(10)
We can see, that the columns of matrix M correspond

to the spectrum of a single particle with synchrotron am-
plitude τ̂i . Vector A represents the synchrotron amplitude

density and vector S is the expected value of the cumulative
power density spectrum of many particles, which can be
compared with the experimentally obtained Schottky spec-
trum.

One should note, that as we have

P
(
ωi, τ̂j

)
=

������
∫

∞

−∞

sj(t)e−jωi tdt

������
2

,

where sj(t) is given by Eq. (5), matrix M depends on the
nominal synchrotron frequency. Therefore, we shall use the
notation M

(
ωs0

)
.

BUNCH SHAPE CALCULATIONS
Our procedure will be as follows. Let us assume that we

are given an averaged experimental Schottky spectrum Sexp .
Firstly, we need to exclude the frequency bins corresponding
to the p = 0 satellite, as these add up coherently and Eq. (9)
does not hold. We also remove corresponding rows from
matrix M. Then, we try to minimize the cost function

C
(
ωs0,A

)
=

��log
[
M

(
ωs0

)
· A

]
− log

[
Sexp

] ��2 , (11)

where the log functions are taken point-wise and |·| is the
standard euclidean metric. Having found the optimal ωs0

and A we can restore the longitudinal bunch shape and
synchrotron frequency distribution using Eqs. (2) and (4)
respectively.

It is certain that the experimental spectrum is susceptible
to noise and finite time of averaging effects. It may therefore
happen, that the pair (ωs0,A) which minimizes C

(
ωs0,A

)
is different from the true nominal synchrotron frequency and
amplitude density. We have an example of such a situation
in Fig. 2.

Figure 2: WCM bunch profile and results of bunch profile
fitting. Without putting any constraints on the synchrotron
amplitude distribution we end up with an exotic bunch shape.

In order to overcome this feature, our proposed solution
is based on the assumption that synchrotron amplitude den-
sities follow a Rice distribution [11], which is the distribu-
tion of distances from zero for samples taken from a 2D
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univariate normal distribution. It is determined by two pa-
rameters, the Gaussian variance σ and the modulus of its
mean µ. We base our assumption on observations of bunch
shapes measured by the Wall Current Monitor (WCM) [12]
and computed synchrotron amplitude densities (via Eq. (4)),
which confirm this hypothesis. We present typical amplitude
densities together with the corresponding Rice distributions
in Fig. 3. Our assumption may be seen as a regulariza-
tion, that is, introducing information which helps to solve
an ill-posed problem by preventing solutions from wrongly
compensating the errors.

Figure 3: Synchrotron amplitude distributions calculated for
different beam modes are shown to follow a Rice distribution.
Optimal Rice parameters were found as a result of curve
fitting.

Finding a solution to nonlinear problems is not always
possible analytically. Therefore we decided to apply a dif-
ferential evolution algorithm [13] implemented in a SciPy
library [14] in order to find parameters which minimize the
cost function C

(
ωs0,A

)
.

Figure 4: Rice and free fit spectra compared with an exper-
imental Schottky spectrum. There is no fit for the p = 0
satellite, as it adds up coherently and Eq. (9) does not hold.

Matrices M
(
ωs0

)
were pre-calculated in order to reduce

the computation time needed for evaluation of the cost func-
tion. In order to determine the bunch shape and synchrotron
frequency distribution, we fit 5 parameters in total. The first
three have already been mentioned, these are σ and µ of the
Rice distribution and the nominal synchrotron frequency.

Additionally, we need to fit the scale, as the magnitude
of Sexp may change, and finally, we take into considera-
tion that some information may be masked by noise and we
may actually only see the top part of the spectrum. How-
ever, this was not found to be the case in the spectra that we
have analysed, as the noise parameter was observed to be
negligible. Comparing the calculated profiles with those ob-
tained with the WCM, confirms the accuracy of the proposed
method. This is shown in Fig. 5.

Figure 5: Bunch shapes derived from the Horizontal and
Vertical LHC Schottky spectra in a time interval of 100
seconds around WCM measurement.

CONCLUSION
The results obtained have been verified in three stages.

Firstly, the experimental Schottky spectrum was compared
to one obtained from the optimization procedure, with the
conclusion that a Rice-based fit compares well with Sexp

(and is similar to the free fit). Secondly, bunch profiles
calculated from vertical and horizontal monitors are self-
consistent. Finally, comparing the calculated profiles with
those obtained with the WCM confirms the accuracy of the
proposed method.

The aim of this study was not to transform the Schottky
system into a longitudinal profile measurement device, for
which the WCMs provide a more direct tool, but to be a step
towards improving Schottky-based diagnostics in the LHC.
The proposed procedure will now be adapted to transverse
signals, which contain additional information on tune and
chromaticity, with the measured bunch profiles used as a
quality indicator for these derived quantities.
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