Author: Thurman-Keup, R.M.
Paper Title Page
MOPP034 Beam Instrumentation Challenges for the Fermilab PIP-II Accelerator 181
 
  • V.E. Scarpine, N. Eddy, D. Frolov, M.A. Ibrahim, L.R. Prost, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.
Fermilab is undertaking the development of a new 800 MeV superconducting RF linac to replace it’s present normal conducting 400 MeV linac. The PIP-II linac warm front-end consists of an ion source, LEBT, RFQ and MEBT which includes an arbitrary pattern bunch chopper, to generate a 2.1 MeV, 2mA H beam. This is followed immediately by a series of superconducting RF cryomodules to produce a 800 MeV beam. Commissioning, operate and safety present challenges to the beam instrumentation. This paper describes these beam instrumentation challenges and the choices made for PIP-II.
 
poster icon Poster MOPP034 [0.999 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP034  
About • paper received ※ 10 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP041 Observations of Long-Range and Short-Range Wakefield Effects on Electron-Beam Dynamics in TESLA-type Superconducting RF Cavities 428
 
  • A.H. Lumpkin, N. Eddy, D.R. Edstrom, J. Ruan, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Fermilab Accelerator Science and Technology (FAST) facility has a unique configuration of a photocathode rf gun beam injecting two TESLA-type single cavities (CC1 and CC2) in series prior to the cryomodule. Beam propagation off axis in these cavities can result in both long-range and short-range transverse wakefields which can lead to emittance dilution within the macropulses and micropulses, respectively. Two configurations of a Hamamatsu C5680 streak camera viewing a downstream OTR screen were utilized to track centroid shifts during the macropulse (framing mode) for the long-range case and during the micropulse for the short-range case (~10-micron spatial resolution and 2-ps temporal resolution). Steering off axis before CC1, resulted in a 100-kHz bunch centroid oscillation within the macropulse that was detected by the downstream rf BPMs and the streak camera*. At 500 pC/b, 50b, and 4-mrad off-axis vertical steering into CC2, we observed an ~ 100-micron head-tail centroid shift in the streak camera image y(t) profiles which we attributed to a short-range wakefield effect. Additional results for kick-angle compensations and model results will be presented.
*A.H. Lumpkin et al., Phys. Rev. Accel. and Beams 21,064401 (2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP041  
About • paper received ※ 10 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)