Author: Schlott, V.
Paper Title Page
MOPP046
Electron Beam Diagnostics for SLS2.0  
 
  • C. Ozkan Loch, R. Ischebeck, G.L. Orlandi, V. Schlott, A. Streun
    PSI, Villigen PSI, Switzerland
 
  In the near future the SLS storage ring will be upgraded for significantly higher brightness and coherence. Although the upgrade will require similar instrumentation to that already implemented for current SLS operation, significant changes in the number of devices, their specifications and their technical realizations will have to be made according to the specific requirements of SLS 2.0, using the newly available technologies and standardizations at PSI. This poster will provide an overview of the design, technical specifications, implementation and expected challenges of these systems. The beam position monitors and fast-orbit feedbacks are not included in this presentation.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP009
Measurement of Electron Pulse Length at 35 MeV Using a Terahertz Split Ring Resonator  
 
  • X.Y. Liu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • M.M. Dehler, V. Guzenko, R. Ischebeck, X.Y. Liu, C. Lombosi, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
  • V. Georgiadis, D.M. Graham, M.T. Hibberd
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  • A.L. Healy, S.P. Jamison
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • D. Lake
    The University of Manchester, Manchester, United Kingdom
  • T.H. Pacey
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Rohrbach
    University of Bern, Bern, Switzerland
 
  Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme (730871). X.Y. Liu was supported by China Scholarship Council for a 2-year study at PSI (201706340057).
The resolution of a streak camera system strongly depends on the slew rate of the deflecting element, which is the product of the amplitude and frequency of the device. An attractive approach towards femtosecond and sub-femtosecond range consists in using terahertz-driven devices, which offer a good combination of high frequency and high gradient-gradients of GV/m have been demonstrated in split ring resonator using pulse created by rectifying ultrashort laser pulses. We present results obtained from a beam experiment at the VELA facility at Daresbury laboratory. We tested a planar resonator derived from the geometry of a split ring resonator with an aperture for the beam of 20 um.
Email address: xiaoyu.liu@psi.ch
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)