Author: Posthuma de Boer, D.W.
Paper Title Page
MOPP031 Optimisation of the ISIS Proton Synchrotron Experimental Damping System 167
 
  • A. Pertica, D.W. Posthuma de Boer, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Komppula
    CERN, Meyrin, Switzerland
 
  The ISIS Neutron and Muon Source, located in the UK, consists of a H linear accelerator, a rapid cycling proton synchrotron and two extraction lines delivering protons onto heavy metal targets. One of the limiting factors for achieving higher intensities in the accelerator is the head-tail instability present in the synchrotron, around 2ms after injection. In order to mitigate this instability, an experimental damping system is being developed for the ISIS synchrotron. Initial tests using a split electrode BPM as a pickup and a ferrite loaded kicker as a damper showed positive results. This paper describes the different developments made to the damping system and planned improvements to optimize its performance for use in normal operations.  
poster icon Poster MOPP031 [1.557 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP031  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP036 Performance of an In-Air Secondary Emission Grid Profile Monitor at the ISIS Neutron and Muon Source 407
 
  • D.W. Posthuma de Boer, C. Bovo, H.V. Cavanagh, B. Jones, A.H. Kershaw, A. Pertica
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS neutron and muon source, located in the UK, consists of an H linear accelerator, a rapid cycling proton synchrotron and extraction lines to two target stations. A project is currently under way to replace the target assembly of the First Target Station (TS1) in order to secure its continued operation and improve operational flexibility. In addition to a number of other diagnostic tools, a new secondary emission (SEM) grid profile monitor is expected to be located within the helium atmosphere of the new target assembly. To investigate the performance of an out-of-vacuum SEM grid, a prototype monitor was positioned in-air between a beam exit window and a dump. Profile measurements taken with this monitor are presented, including tests at a range of bias voltages with a fast data acquisition system to investigate secondary signal sources.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP036  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)