Author: Harkay, K.C.
Paper Title Page
TUPP039 Horizontal and Vertical Emittance Measurements of the Advanced Photon Source Booster Synchrotron Beam at High Charge 420
 
  • K.P. Wootton, W. Berg, J.R. Calvey, K.C. Harkay, A.H. Lumpkin, A. Xiao, B.X. Yang, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
In order to maximise the injection efficiency from the booster synchrotron into the proposed Advanced Photon Source Upgrade storage ring, beam-based optimisation of the booster electron optical lattice is anticipated. In the present work, we present non-destructive beam size and emittance measurements using the booster synchrotron light monitor and destructive quadrupole scan emittance measurements in the booster to storage ring transport line. Destructive measurements are performed with a 0.1 mm thickness Cerium-doped Yttrium Aluminium Garnet screen. In order to characterise performance, both the beam energy at extraction (5, 6 and 7 GeV) and the bunch charge are varied.
 
poster icon Poster TUPP039 [0.973 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP039  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP017 Current Monitor and Beam Position Monitor Performance for High Charge Operation of the Advanced Photon Source Particle Accumulator Ring 552
 
  • A.R. Brill, J.R. Calvey, K.C. Harkay, R.T. Keane, N. Sereno, U. Wienands, K.P. Wootton, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
A design choice for the Advanced Photon Source Upgrade to inject into the storage ring using bunch swap out rather than off-axis accumulation means that the Advanced Photon Source injectors are required to accelerate much higher electron bunch charge than originally designed. In the present work, we outline upgrades to the current monitor and beam position monitor diagnostics for the Particle Accumulator Ring to accommodate bunch charges of 1-20 nC. Through experiments, we compare and characterize the system responses over the range of bunch charge.
 
poster icon Poster WEPP017 [3.163 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP017  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)