Author: Gex, D.
Paper Title Page
TUPP006 Transverse Emittance Measurement of a 2.5 MeV Proton Beam on LIPAc, IFMIF’s Prototype 288
 
  • J. Marroncle, P. Abbon, B. Bolzon, T. Chaminade, N. Chauvin, S. Chel, J.F. Denis, A. Gaget
    CEA-DRF-IRFU, France
  • T. Akagi, K. Kondo, M. Sugimoto
    QST, Aomori, Japan
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • H. Dzitko, D. Gex, A. Jokinen
    F4E, Germany
  • J.M. García, D. Jiménez-Rey, A. Ros, V. Villamayor
    CIEMAT, Madrid, Spain
  • A. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
 
  IFMIF (International Fusion Materials Irradiation Fa-cility) is an accelerator-driven neutron source aiming at testing fusion reactor materials. Under the Broader Ap-proach Agreement, a 125 mA / 9 MeV CW deuteron accelerator called LIPAc (Linear IFMIF Prototype Accel-erator) is currently under installation and commissioning at Rokkasho, Japan, to validate the IFMIF accelerator. During the beam commissioning at 5 MeV which started in June 2018, the horizontal and vertical transverse emit-tance of a 2.5 MeV proton beam have been measured downstream of the RFQ for different machine configura-tions. Such measurements were done with an emittance measurement unit composed of slits defining a beamlet of 200 µm width, then of steerers and finally of a SEM grids monitor. In this paper, the process and the system are first described. The secondary electron emission of SEM-Grid wires is then estimated based on measure-ments and results are close to the usual rule of thumb. Finally, emittance measurements are presented and comparisons with beam dynamics simulations show good agreement.  
poster icon Poster TUPP006 [1.974 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP006  
About • paper received ※ 02 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP013 Beam Commissioning of Beam Position and Phase Monitors for LIPAc 534
 
  • I. Podadera, D. Gavela, A. Guirao, D. Jiménez-Rey, L.M. Martínez, J. Mollá, C. Oliver, R. Varela, V. Villamayor
    CIEMAT, Madrid, Spain
  • T. Akagi, K. Kondo, Y. Shimosaki, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • L. Bellan, M. Comunian, F. Grespan, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • Y. Carin, H. Dzitko, D. Gex, A. Jokinen, I.M. Moya
    F4E, Germany
  • A. Marqueta
    Fusion for Energy, Garching, Germany
  • A. Rodríguez Páramo
    ESS Bilbao, Zamudio, Spain
 
  Funding: Work partially supported by the Spanish Ministry of Science and Innovation under project AIC-A-2011-0654 and FIS2013-40860-R
The LIPAc accelerator is 9-MeV, 125-mA CW deuteron accelerator that aims to validate the technology that will be used in the future IFMIF accelerator (40-MeV, 2 x 125-mA CW). LIPAc is presently under beam commissioning of the second acceleration stage (injector and Radio Frequency Quadrupole) at 5 MeV. In this stage two types of BPM¿s are used: four stripline-type to control the transverse position and phase at the Medium Energy Beam Transport line (MEBT), and three other stripline-type mainly for the precise measurements of the mean beam energy at the Diagnostics Plate. All the BPM¿s have been successfully tested and served to increase the duty cycle and the average power of the beam delivered down to the beam dump. Moreover, the BPM¿s were key devices for the transverse beam positioning and longitudinal beam tuning and validation of the RFQ and re-buncher cavities at the MEBT. In this contribution, an overview of the beam position monitors system installation and characterization in the facility will be reported. First tests of the system with the upgraded acquisition electronics for the next phase will be also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP013  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)