Author: Bergamaschi, M.
Paper Title Page
WEPP037 First Measurements of Cherenkov-Diffraction Radiation at Diamond Light Source 624
 
  • D.M. Harryman, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • M. Bergamaschi, R. Kieffer, M. Krupa, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A. Potylitsyn
    TPU, Tomsk, Russia
 
  Cherenkov Diffraction Radiation (ChDR), appearing when a charged particle moves in the vicinity of a dielectric medium with speed faster than the speed of light inside the medium, is a phenomenon that can be exploited for a range of non-invasive beam diagnostics. By using dielectric radiators that emit photons when in proximity to charged particle beams, one can design devices to measure beam properties such as position, direction and size. The Booster To Storage-ring (BTS) test stand at Diamond Light Source provides a 3 GeV electron beam for diagnostics research. A new vessel string has been installed to allow the BTS test stand to be used to study ChDR diagnostics applicable for both hadron and electron accelerators. This paper will discuss the commissioning of the BTS test stand, as well as exploring the initial results obtained from the ChDR monitor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP037  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAO01 Cherenkov Diffraction Radiation as a tool for beam diagnostics 660
 
  • T. Lefèvre, D. Alves, M. Bergamaschi, A. Curcio, O.R. Jones, R. Kieffer, S. Mazzoni, N. Mounet, A. Schlogelhofer, E. Senes
    CERN, Geneva, Switzerland
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • A. Aryshev, N. Terunuma
    KEK, Ibaraki, Japan
  • M.G. Billing, Y.L. Bordlemay Padilla, J.V. Conway, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.V. Bleko, S.Yu. Gogolev, A.S. Konkov, J.S. Markova, A. Potylitsyn, D.A. Shkitov
    TPU, Tomsk, Russia
  • K.V. Fedorov, D.M. Harryman, P. Karataev, K. Lekomtsev
    JAI, Egham, Surrey, United Kingdom
  • J. Gardelle
    CEA, LE BARP cedex, France
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
 
  During the last three years, the emission of Cherenkov Diffraction Radiation (ChDR), appearing when a relativistic charged particle moves in the vicinity of a dielectric medium, has been investigated with the aim of providing non-invasive beam diagnostics. ChDR has very interesting properties, with a large number of photons emitted in a narrow and well-defined solid angle, providing excellent conditions for detection with very little background. This contribution will present a collection of recent beam measurements performed at several facilities such as the Cornell Electron Storage Ring, the Advanced Test Facility 2 at KEK, the Diamond light source in the UK and the CLEAR test facility at CERN. Those results, complemented with simulations, suggest that the use of both incoherent and coherent emission of Cherenkov diffraction radiation could open up new beam instrumentation possibilities for relativistic charged particle beams.  
slides icon Slides THAO01 [10.658 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-THAO01  
About • paper received ※ 09 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)