Author: Shen, G.D.
Paper Title Page
MOPB16 Single Heavy Ion Bunch Generation Scheme in BRing at HIAF 61
 
  • D.Y. Yin, H. Du, L.J. Mao, G.D. Shen, J.C. Yang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  As the Booster Ring of the High Intensity Heavy-ion Accelerator Facility (HIAF), BRing is a synchrotron which can be able to accumulate and accelerate full ion species provided by iLinac to required energy with RF acceleration system. When accelerating uranium beam(e.g. 238U35+), the variation range of the kinetic energy is 17MeV/u-830 MeV/u, and the corresponding revolution frequency range is 0.099MHz-0.447MHz. Because of the low frequency limit value of 0.099MHz, the RF frequency of RF cavity should be h(harmonic number) times of ,thus, there will have h(is equal to harmonic number) bunches after acceleration. To satisfy the extraction requirement, the accelerated multiple bunches should be recollected in one bunch by means of longitudinal manipulation. The different single bunch generation method of debunching and bunch merging are investigated separately, and the beam parameters in different cases are obtained, meanwhile, the optimized RF program during the debunching and bunch merging are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2018-MOPB16  
About • paper received ※ 24 October 2018       paper accepted ※ 14 November 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB03 Multi-physics Analysis of a CW Four-rod RFQ 138
 
  • Z.S. Li, Y. Cong, H. Du, Y. He, L. Jing, Q.Y. Kong, X.N. Li, J. Meng, G.D. Shen, H.N. Wang, K.D. Wang, Z.J. Wang, Y. Wei, J.X. Wu, J.W. Xia, H.M. Xie, W.J. Xie, X.W. Xu, Z. Xu, J.C. Yang, Y.Q. Yang, X. Yin, Y.J. Yuan, Y. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
  • Y.R. Lu, K. Zhu
    PKU, Beijing, People’s Republic of China
 
  The new injector SSC-LINAC is under design and con-struction to improve the efficiency and intensity of beams for the Separated-Sector Cyclotron (SSC). This will be accomplished with a normal conducting radio-frequency quadrupole (RFQ) accelerator. To match with the SSC, the RFQ must be operated on Continuous Wave (CW) mode with a frequency of 53.667 MHz. A four-rod structure was adopted for small dimensions of the cavity. While, it was a huge challenge on CW mode. A multi-physics theoretical analysis, including RF, thermal, struc-tural and frequency shift coupling analysis, have been completed in response to the security and stable opera-tion of the RFQ. The experimental measurement of fre-quency shift was also completed, which is consistent with the simulation. In this paper, the results of theoretical analysis and experiment are reported in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HIAT2018-WEPB03  
About • paper received ※ 09 November 2018       paper accepted ※ 14 November 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)