Author: Zhang, Z.
Paper Title Page
WEP043 Multi-Energy Operation Analysis in a Superconducting Linac Based on off-Frequency Detune Method 416
 
  • Z. Zhang, C. Adolphsen, Y. Ding, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  The free-electron laser facilities driven by a superconducting radio-frequency (SRF) linac provide high-repetition-rate electron beam, which makes it feasible to feed multiple undulator lines at the same time. In this paper, we study a method of controlling the beam energy of multiple electron bunches by off-frequency detuning of the SRF linac. Based on the theoretical analysis, we present the optimal solutions of the method and the strategy to allocate linac energy for each possible off-frequency detune. The initial acceleration phases before detuning of the SRF linac can be optimized to reduce the necessary SRF linac energy overhead. We adopt the LCLS-II-HE configuration as an example to discuss possible schemes for two undulator lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP043  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP104 A High-Power, High-Repetition Rate THz Source for LCLS-II Pump-Probe Experiments 556
 
  • Z. Zhang, A.S. Fisher, M.C. Hoffmann, Z. Huang, B.T. Jacobson, P.S. Kirchmann, W.S. Lee, A. Lindenberg, E.A. Nanni, R.W. Schoenlein
    SLAC, Menlo Park, California, USA
  • S. Sasaki, J.Z. Xu
    ANL, Lemont, Illinois, USA
 
  Experiments using a THz pump and an x-ray probe at an x-ray free-electron laser (XFEL) facility like LCLS-II require frequency-tunable (3 to 20 THz), narrow bandwidth ( ∼ 10\%), carrier-envelope-phase-stable THz pulses that produce high fields (>1MV/cm) at the repetition rate of the x rays and well synchronized with them. In this paper, we study a two-bunch scheme to generate THz radiation at LCLS-II: the first bunch produces THz radiation in a permanent-magnet or electromagnet wiggler immediately following the LCLS-II undulator that produces X-rays from the second bunch. The initial time delay between the two bunches is optimized to compensate for the path difference in transport. We describe the two-bunch beam dynamics, the THz wiggler and radiation, as well as the transport system bringing the THz pulses from the wiggler to the experimental hall.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP104  
About • paper received ※ 23 August 2019       paper accepted ※ 17 September 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD02
Attosecond Pulses from Enhanced SASE at LCLS  
 
  • A. Marinelli, P.H. Bucksbaum, E. Champenois, J. Cryan, T.D.C. Driver, J.P. Duris, Z. Huang, A.A. Lutman, J.P. MacArthur, Z. Zhang
    SLAC, Menlo Park, California, USA
  • Z. Huang, S. Li, J.P. MacArthur
    Stanford University, Stanford, California, USA
  • M. Kling, P. Rosenberger
    LMU, Garching, Germany
  • A. Zholents
    ANL, Lemont, Illinois, USA
 
  In my talk I will report the generation and diagnostic of GW-scale soft X-ray attosecond pulses with a current-enhanced X-ray free-electron laser. Our method is based on the enhaced SASE scheme, where an electron bunch with high-current spike is generated by the interaction of the relativistic electrons with a high-power infrared pulse. The X-ray pulses generated by the compressed electron beam are diagnosed with angular photoelectron streaking, and have a mean pulse duration of 350 attoseconds. Our source has a peak brightness that is 6 orders of magnitude larger than any other source of isolated attosecond pulses in the soft X-ray spectral region. This unique combination of high intensity, high photon energy and pulse duration enables the investigation of valence electron dynamics with non-linear spectroscopy and single-shot imaging. I will also discuss the generation of two-color attosecond pulses and our future plans for attosecond science at LCLS-II.  
slides icon Slides THD02 [0.260 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)