Paper | Title | Page |
---|---|---|
WEP043 | Multi-Energy Operation Analysis in a Superconducting Linac Based on off-Frequency Detune Method | 416 |
|
||
The free-electron laser facilities driven by a superconducting radio-frequency (SRF) linac provide high-repetition-rate electron beam, which makes it feasible to feed multiple undulator lines at the same time. In this paper, we study a method of controlling the beam energy of multiple electron bunches by off-frequency detuning of the SRF linac. Based on the theoretical analysis, we present the optimal solutions of the method and the strategy to allocate linac energy for each possible off-frequency detune. The initial acceleration phases before detuning of the SRF linac can be optimized to reduce the necessary SRF linac energy overhead. We adopt the LCLS-II-HE configuration as an example to discuss possible schemes for two undulator lines. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP043 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP104 | A High-Power, High-Repetition Rate THz Source for LCLS-II Pump-Probe Experiments | 556 |
|
||
Experiments using a THz pump and an x-ray probe at an x-ray free-electron laser (XFEL) facility like LCLS-II require frequency-tunable (3 to 20 THz), narrow bandwidth ( ∼ 10\%), carrier-envelope-phase-stable THz pulses that produce high fields (>1MV/cm) at the repetition rate of the x rays and well synchronized with them. In this paper, we study a two-bunch scheme to generate THz radiation at LCLS-II: the first bunch produces THz radiation in a permanent-magnet or electromagnet wiggler immediately following the LCLS-II undulator that produces X-rays from the second bunch. The initial time delay between the two bunches is optimized to compensate for the path difference in transport. We describe the two-bunch beam dynamics, the THz wiggler and radiation, as well as the transport system bringing the THz pulses from the wiggler to the experimental hall. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP104 | |
About • | paper received ※ 23 August 2019 paper accepted ※ 17 September 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THD02 |
Attosecond Pulses from Enhanced SASE at LCLS | |
|
||
In my talk I will report the generation and diagnostic of GW-scale soft X-ray attosecond pulses with a current-enhanced X-ray free-electron laser. Our method is based on the enhaced SASE scheme, where an electron bunch with high-current spike is generated by the interaction of the relativistic electrons with a high-power infrared pulse. The X-ray pulses generated by the compressed electron beam are diagnosed with angular photoelectron streaking, and have a mean pulse duration of 350 attoseconds. Our source has a peak brightness that is 6 orders of magnitude larger than any other source of isolated attosecond pulses in the soft X-ray spectral region. This unique combination of high intensity, high photon energy and pulse duration enables the investigation of valence electron dynamics with non-linear spectroscopy and single-shot imaging. I will also discuss the generation of two-color attosecond pulses and our future plans for attosecond science at LCLS-II. | ||
![]() |
Slides THD02 [0.260 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |