Author: Schreiber, S.
Paper Title Page
WEP036 The PolariX-TDS Project: Bead-Pull Measurements and High-Power Test on the Prototype 396
 
  • P. Craievich, M. Bopp, H.-H. Braun, A. Citterio, R. Ganter, T. Kleeb, F. Marcellini, M. Pedrozzi, E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
  • R.W. Aßmann, F. Christie, R.T.P. D’Arcy, U. Dorda, M. Foese, P. Gonzalez Caminal, M. Hoffmann, M. Hüning, R. Jonas, O. Krebs, S. Lederer, V. Libov, B. Marchetti, D. Marx, J. Osterhoff, M. Reukauff, H. Schlarb, S. Schreiber, G. Tews, M. Vogt, A. Wagner
    DESY, Hamburg, Germany
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W.L. Millar, S. Pitman, K.T. Szypula, W. Wuensch, V. del Pozo Romano
    CERN, Meyrin, Switzerland
  • W.L. Millar
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  A collaboration between DESY, PSI and CERN has been established to develop and build an advanced modular X- band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. The prototype of the novel X-band TDS, the Polarizable X-band (PolariX) TDS, was fabricated at PSI following the high-precision tuning-free production process developed for the C-band Linac of the SwissFEL project. Bead-pull RF measurements were also performed at PSI to verify, in particular, that the polarization of the dipole fields does not have any rotation along the structure. The high-power test was performed at CERN and now the TDS is at DESY and has been installed in FLASHForward, where the first streaking experience with beam will be accomplished. We summarize in this paper the status of the project, the results of the bead-pull measurements and the high power test.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP036  
About • paper received ※ 21 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP047 Update on the Photocathode Lifetime at FLASH and European XFEL 427
 
  • S. Lederer, F. Brinker, S. Schreiber
    DESY, Hamburg, Germany
  • L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  The photoinjectors of FLASH and the European XFEL at DESY (Hamburg, Germany) are operated by laser driven RF-guns. In both facilities Cs2Te photocathodes are successfully used. In this paper we give an update on the lifetime, quantum efficiency (QE) and dark current of the photocathodes used over the last years. At FLASH cathode #73.3 was operated for a record lifetime of 1413 days and was replaced December 2018 by cathode #105.2. At the European XFEL cathode #680.1 is in operation since December 2015, for 1356 days up to now.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP047  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP048 FLASH Photoinjector Laser Systems 430
 
  • S. Schreiber, C. Grün, K. Klose, J. Rönsch-Schulenburg, B. Steffen
    DESY, Hamburg, Germany
 
  The free-electron laser facility FLASH at DESY (Hamburg, Germany) operates two undulator beamlines simultaneously for FEL operation and a third for plasma acceleration experiments (FLASHForward). The L-band superconducting technology allows accelerating fields of up to 0.8 ms in length at a repetition rate of 10 Hz (burst mode). A fast kicker-septum system picks one part of the 1 MHz electron bunch train and kicks it to the second beamline such that two beamlines are operated simultaneously with the full repetition rate of 10 Hz. The photoinjector operates three laser systems. They have different pulse durations and transverse shapes and are chosen to serve best for the given user experiment in terms of electron bunch charge, bunch compression, and bunch pattern. It is also possible to operate the laser systems on the same beamline to provide specific double pulses for certain type of experiments.  
poster icon Poster WEP048 [2.642 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP048  
About • paper received ※ 26 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP074 FLASH: The Pioneering XUV and Soft X-Ray FEL User Facility 734
 
  • K. Honkavaara, S. Schreiber
    DESY, Hamburg, Germany
 
  FLASH, the free-electron laser (FEL) at DESY (Hamburg) started user operation in summer 2005. It delivers high peak and average brilliance XUV and soft X-ray FEL radiation to photon experiments. Nowadays, FLASH has a 1.25 GeV superconducting linac, and two undulator beamlines, which are operated simultaneously. This paper provides an overview of its evolution from a test facility for superconducting accelerator technology to a full-scale FEL user facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP074  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA03 FLASH - Status and Upgrades 776
 
  • J. Rönsch-Schulenburg, K. Honkavaara, S. Schreiber, R. Treusch, M. Vogt
    DESY, Hamburg, Germany
 
  FLASH, the Free-Electron Laser at DESY in Hamburg was the first FEL user facility in the XUV and soft X-ray range. The superconducting RF technology allows to produce several thousand SASE pulses per second with a high peak and average brilliance. It developed to a user facility with a 1.25 GeV linear accelerator, two undulator beamlines running in parallel, and a third electron beamline containing the FLASHForward plasma wakefield experiment. Actual user operation and FEL research are discussed. New concepts and a redesign of the facility are developed to ensure that also in future FLASH will allow cutting-edge research. Upgrade plans are discussed in the contribution.  
slides icon Slides FRA03 [10.554 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA03  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)