

Contents

Large Scale Research Facilities in the Netherlands

Investments in the future of the 'knowledge-economy'

Science Drivers for a New Light Source

- The limitations of material and molecular research in high Magnetic Fields
- Dynamic Nuclear Polarization in NMR
- Biomolecular Spectroscopy

Design and system choices for our Nijmegen FIR-FEL

 Combining pump-probe options with very narrow bandwidth output in a single instrument

Advanced spectroscopy within IMM

Nijmegen Center for Advanced Spectroscopy

On Large Scale Research Facilities in the Netherlands

The Nijmegen Center for Advanced Spectroscopy

- *Nano*Lab (Rasing)

to facilitate access to Nano-Science and Technology for Small and Medium size enterprises

 Trace gas Facility (Harren)

part per billion range (1 ppb = 1:10⁹), 100 times more sensitive than best commercially available equipment

Nijmegen Science Faculty

HFML (Maan)

NMR pavillion (Kentgens)

Science faculty: opening 2007

Magnetic Field Landscape

NMR and HFML: NMR towards Instrumentation above 1 GHz

NMR by mechanical detection

Magnetic Resonance Force Microscopy

Elementary Excitations in Magnetic Fields

Probing Dynamic Interactions and Inhomogeneous Effects

(A) 90⁰ pulse: implies full saturation of the transition: a challenge in the THz: inducing a $\pi/2$ pulse pulselength100 ns: 100 Watt pulselength 50 ns: 400 Watt

(B) Need for two pulses with variable time-separation:time-separation up to a few μs

(A+B) We need a continuous narrow bandwidth FIR pulse

Dynamic Nuclear Polarization:

Coupling of EPR-NMR: dragging as many nuclear spins as possible into a pure quantum state

NMR science needs to meet two contradicting demands:

(a) (weak) coupling to help pull nuclear spin:(b) no-coupling during the (enhanced) NMR phaseMORE INTENSE!

Dynamic Nuclear Polarization:

Coupling during collisions: *e.g.* in Xe Hyperpolarization.

Off-Line Preparation Times of Hyperpolarized Samples are Minutes.

CW FIR NEEDED!?

Molecular Spectroscopy in the THz: More than molecular recognition

From Electronic (UV) \rightarrow IR (NH, NO, CH . = structure) \rightarrow (to) FIR (large scale motion or functionality)

Consequences of Nijmegen Users:

REQUESTED BUT IMPOSSIBLE:

- continuous wave to 20 picoseconds time-resolved pump-probe
- continuously tunable light source with a variable bandwidth ranging from 1.10⁻⁵ to Fourier limited at all pulse structures
- tunable power output up to 10 kWatt
- 100% duty cycle
- wavelength between 10 μ m (30 THz) and 10 mm (0.03 THz)

FOR HIGH MAGNETIC FIELDS ONLY:

- quasi-continuous wave, tunable light source
- bandwidth down to 1.10⁻⁵
- macro-pulses of length up to 10 μs
- (macro pulse) power of 1 kWatt
- high overall duty cycle

Compare: the USCB-FIR-FEL, Santa Barbara, and the Israeli FEL project, Tel Aviv).

Design Choices:

philosophy:

allowing (quasi) continuous wave operation with a narrow bandwidth as well as 20 picoseconds timeresolved pump-probe experiments, continuously tunable

design aim:

an RF Linac (1 to 1.3 GHz)

a linear cavity with an interferometer (Michelson / Fox-Smith) and 20-30 simultaneous optical pulses

Output:

quasi CW-output after post-cavity filtering, 100 Watt

or

micro-pulses (20-50 psec pulses, 10 kWatt during the 10 μs macro-pulse).

Wavelength: from 100 μ m (3 THz) to 1.5 mm (200 GHz).

Design of a Long Wavelength FEL

The THz FEL- Operation

The Narrow Band THz FEL- Operational Principle

Oepts and Colson (1990), Bakker, Oepts, Van der Meer *et al.* (1993), Oepts, Weits, Van der Meer *et al.* (1996-1998), Szarmes, and Madey (1993), Israeli Project (2005) and others . .

Generation of Phase-Locked Pulses (FELIX, 1990-1999)

Bandwidth of single micro-pulse (2.5 cm⁻¹)

After phase locking of the micro-pulses (☺ and ☺ (spontaneous coherence)

Bandwidth (=quality of phase coupling) of Fox-Smith about 0.0015 cm⁻¹

Ideal: external filtering of single longitudinal cavity mode (0.0002cm⁻¹ or BWL macro-pulse)

Generation of Phase-Locked Pulses (FELIX, 1990-1999)

Fox-Smith: inserting path differences (= multiples of the micro-pulse distance)

Michelson: Measuring the inter-pulse coherence

Design of a Long Wavelength FEL

Results from Weits et al.:

External Selection with Fabry-Perot Etalons:

Study Themes:

- optimal design for intracavity phase locking between 100 μm and 1.5 mm
- controlling the spontaneous coherence and interferometer induced coherence
- material research on low-loss optics and frequency filters
- maximizing duty cycle

Planning:

- January 2008: detailed plan for hybrid, FEL and Building
- 2008-2010: construction and commissioning

Acknowledgements:

First:

National (NL) Programme for Investments in Large Scale Facilities

And further:

Lex van der Meer, Dick Oepts, + FELIX Staff.

and

Van Bentum (NMR), Peerenboom, Guertler (HFML),

Meerts (Mol Spectroscopy)

and the FEL community for their 'hospitality' at this conference