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OutlineOutline
• Laser acceleration

– High gradients
– Ultra-short pulses

• Inverse Free Electron Lasers
• Experimental results achieved by IFELs
• Design of a compact laser accelerator suitable 

for injector for an advanced light source
• An example of IFEL-driven FEL
• Conclusions
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IFEL InteractionIFEL Interaction
Undulator magnetic field to couple high power radiation 
with relativistic electrons
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Significant energy exchange between the 
particles and the wave happens when the 
resonance condition is satisfied.
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IFEL characteristics: IFEL characteristics: 
a mature Advanced Acceleratora mature Advanced Accelerator

• Laser accelerator: high gradients 
• Microbunching: control and 

manipulation of beams at the 
optical scale

• Vacuum accelerator: good output 
beam quality

• Efficient mechanism to transfer 
energy from laser to electrons

• State of the art requirements on 
laser and magnet technology

• Synchrotron losses at high energy 
(can be controlled by appropriate 
tapering of undulator)

• Gradient is energy dependent.
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STELLA2 experimentSTELLA2 experiment

W. Kimura et al. First demonstration of high 
trapping efficiency and narrow energy spread 
in a laser accelerator,
PRL, 92, 154801 (2004)

80 % of electrons accelerated, 
energy spread less than 0.5 % FWHM
~30 GW@ λ = 10.6 μm, 
gain up to 17 % of initial beam energy
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Diffraction dominated IFEL @ UCLADiffraction dominated IFEL @ UCLA
• IFEL Advanced Accelerator 

at the Neptune Laboratory
• 0.5 TW 10.6 μm laser
• Strongly tapered Kurchatov

undulator
• Highest recorded IFEL 

acceleration
– 15 MeV beam accelerated to over 

35 MeV in 25 cm
– Relative energy gain  150 % 
– Accelerating gradient ~70 MeV/m !
– Observation of higher harmonic 

IFEL interaction

• IFEL Advanced Accelerator 
at the Neptune Laboratory
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P. Musumeci et al.,High energy gain of 
trapped electrons in a tapered diffraction-
dominated IFEL  PRL, 94, 154801 (2005)
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IFEL efficiencyIFEL efficiency
• Beam loading or pump depletion effects for high accelerated beam

charge ( 1 nC @ 1GeV = 1 J of energy ).

• Energy extraction 
very efficient (> 80%) 
adjusting tapering to 
compensate for peak 
power variation along 
the undulator.

• Simulate radiation 
(and particle) IFEL 
dynamics with 
GENESIS 1.3

Power profile along the bunch for max current

Power along the undulator



P. Musumeci
FEL 2006

Berlin, Germany

Future of Inverse Free Electron Future of Inverse Free Electron 
Laser accelerationLaser acceleration

• There is no laser wavelength preference intrinsic in the IFEL 
equations
– NIR lasers advantages

• Commercial high power sources available
• Table-top-sized laser systems.
• Mitigated diffraction effects

• With the high-power laser wavelengths today available IFEL scales 
optimally for energies up to few GeVs.

• Manipulation of longitudinal phase-space at the laser wavelength 
scale.

• Injector for other kinds of advanced accelerators
• Injector for advanced light sources
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GeVGeV--class IFEL design:class IFEL design:

• Application of IFEL scheme as 4th generation light 
source driver

• Compact-size accelerator
• ESASE benefits intrinsic

– Exponential gain length reduction
– Absolute timing synchronization with external laser
– Control of x-ray radiation pulse envelope

• Need control of energy spread !!!
• Design exercise aimed to extend the energy and 

wavelength reach of planned SPARC linac
• First Advanced Accelerator driven/ radiation source
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Enhanced SASE. Enhanced SASE. 
A. A. ZholentsZholents, , LBNLLBNL--55938 and PRL 92, 224801 (2004)55938 and PRL 92, 224801 (2004)

Modulating Laser at wavelength 2.2 μm, 
power 6 GW

• FEL parameter, of 
modulated beam 8x10-4

twice as large as the non 
modulated beam.

• FEL radiation at 0.15 nm, 
with peak power of 230 GW 
and pulse length of 0.2 fs.
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The SPARC projectThe SPARC project
SPARC parameters 
E 150 – 200 MeV
εn 1 mm-mrad 
σz (FWHM) 10 ps 
Q 1 nC 
f 10 Hz 
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SorgenteSorgente PulsataPulsata AmplificazioneAmplificazione RadiazioneRadiazione
CoerenteCoerente

• SPARC is a SASE-FEL project in the visible range of 
the spectrum 
– SASE saturation length <15 m at 532 nm.

• R&D for shorter wavelength radiation source.
• Advanced beam dynamics. High brightness beams, 

emittance-o-meter, dynamically optimized beam regime, 
velocity bunching.

• Initial commissioning results (see M. Bellaveglia, 
THPPH031 & L. Catani THCAU03)

• Photoinjector driver Ti:Sa laser system will be 
upgraded to  ultra high power laser (Plasmon-X). Unique 
facility for advanced schemes experiments.



P. Musumeci
FEL 2006

Berlin, Germany

Parameter Fixed Value 
Initial e-beam energy (γ value) 210 MeV 
Initial e-beam intrinsic energy spread 0.1% (1σ) 

Initial e-beam current 1 kA 

Laser wavelength 800 nm 
Laser peak power 20 TW 
Nominal length of wiggler, Lw 200 cm 

Rayleigh range  20 cm 
Location of laser waist inside wiggler 100 cm 

Resonant phase angle ψ for wiggler var 
 

ParametersParameters
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Tapering optimizationTapering optimization
• Helical undulator to maximize energy exchange (interaction always ON).
• Keep magnetic field amplitude well under the Halbach limit for a gap = 6 mm 

to ensure technical feasibility.
• Captured fraction up to 90 % with a prebuncher section.
• The undulator period and magnetic field amplitude are changed trying to 

control the resonant phase of acceleration and the longitudinal phase space 
parameters (final energy spread <0.6 %).
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IFEL longitudinal phase spaceIFEL longitudinal phase space
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FEL radiation from IFEL acceleratorFEL radiation from IFEL accelerator
• Sending the IFEL beam into an undulator

FEL radiation @ λ = 3 nm (water window)
• Slippage dominated regime.
• Start-to-end simulations
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Slippage Slippage 
• Slippage in the undulator
• Slippage in a gain length
• Different FEL dynamics (weak superradiance) when Lb~ Lc
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Enhanced SASEEnhanced SASE
• SPARC 6 section undulator, λw = 2.8 cm, K = 1.65
• Effective power gain length = 3 m
• Spiky structure lost due to slippage.
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Inserting slippage sections Inserting slippage sections 
to increase radiation gainto increase radiation gain

• Between undulator section we insert a magnetic delay section for the 
electron beam to realign current and radiation spikes.

• Effective gain length 2.1 m
• The slippage section effectively is a positive R56 region that helps the 

conversion between energy modulation and bunching. Optical 
Klystron

• Need to seed for longitudinal coherence
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Seeding the spikesSeeding the spikes
• Using a long seed the phase in the different spikes is coherent and the 

FEL gain is maximized.
• Effective gain length 1.2 m
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ConclusionsConclusions

• Laser accelerators have made tremendous progress 
and will soon be competitive with more conventional 
machines.

• IFEL accelerator among these offers control of the 
longitudinal phase space.

• Preserving ultrashort pulse structure in FEL requires 
some precautions but can be done.

• The FEL scheme proposed is applicable to any laser 
accelerator beam structure.

• Ultrashort probe beams will come from a synergy 
between laser and accelerator worlds.
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