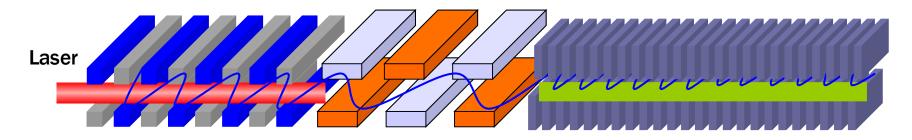


Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

APPLE Undulators for HGHG FELs

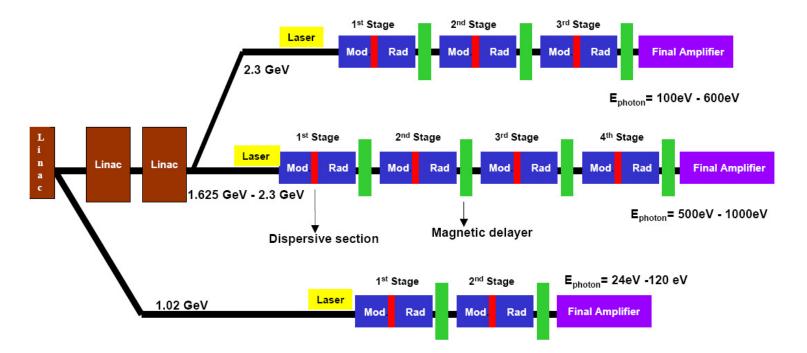


- HGHG Projects
- Cascaded HGHG, The BESSY Soft X-Ray FEL
- Undulator Magnet Design, APPLE III
- Magnetic Material and Field Optimization
- Support and Drive System, Motion Control
- Operation Issues, Focussing Effects
- Machine Protection

HGHG Projects

energy modulation of the electron beam (Modulator) spatial bunching optimized for a particular harmonic

resonant to the harmonic (Radiator)

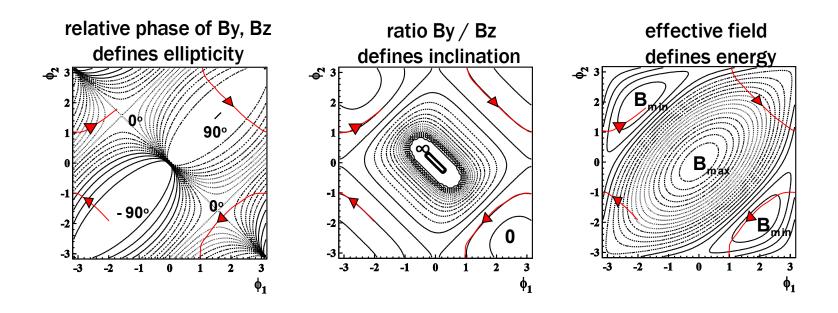

L.-H. Yu et al.,BNL Phys. Rev. A44/8 (1991) 5178

	DUV	FERMI I / II	EUROFEL	BESSY	ARC-EN- CIEL I / II	SDUV
λ / nm	265 / 100	40 / 10	89 / 53	51 - 1	≤66 / 1	89
Electron energy / MeV	175 / 300	1200	450	1000 / 2300	220 / 1000	276
Stages	1	1 / 2	1	2/3/4	1 / 1	1
Status	operational / proposed	funded	construction	proposed	proposed	proposed

Cascaded HGHG FEL

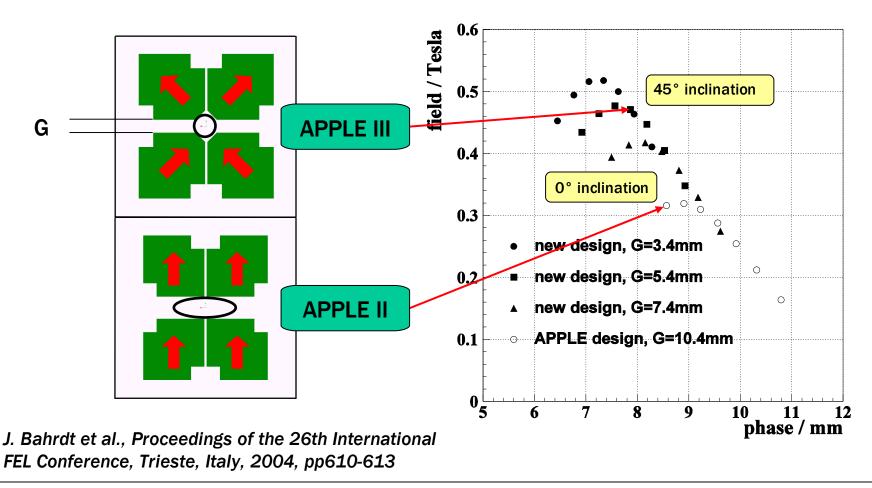
The planned BESSY HGHG FEL facility consists of three HGHG lines to cover the energy range from 24eV to 1000eV

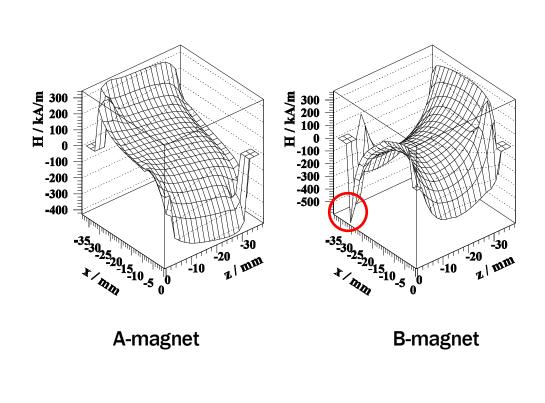
Undulator Parameters of the BESSY FEL


period length in mm and module length in m

	LE-FEL		ME-FEL		HE-FEL	
Energy range	24 – 120 eV		100 – 600 eV		500 – 1000 eV	
	Modulator	Radiator	Modulator	Radiator	Modulator	Radiator
Stage 1	80	62	122	92	122	92
	1,60	3,47	2,20	3,68	2,20	3,68
Stage 2	62	50	92	70	92	70
	1,61	3,45	2,02	2x3,36	2,02	2x2,73
Stage 3			70	50	70	50
			2,10	3x3,45	2,1	3x2,9
Stage 4					50	28,5
					3,45	2x3,135
Final amplifier	50 3x3,45		50		28,5	
			5x3,45		5x3,135	
Total length	20,48 m		44,88 m		49.555 m	

Features of APPLE design:


- parallel motion : hor. / vert. linear und elliptical / helical polarization
- antiparallel motion: linear polarization with angles 0 90 $^\circ$
- 4 movable rows : linear polarization with angles 0 180°
- compensation of polarizing effects of the beamline optic with undulator any arbitrary polarization ellipse can be produced:


The APPLE III Design

last Radiator and final amplifier have a new design APPLE III design: factor 1.4 higher field as compared to APPLE II

Reverse Fields in A-Magnets of UE50

APPLE III - APPLE II

plotted are the strongest reverse fields among all combinations within

- entire gap range
- entire shift range
- various operation modes
- entire z range within magnet

choosing slightly different magnet grade for APPLE III recovers magnet stability:

typical values

grade	Br / Tesla	Hcj / kA/m		
655 TP	1.26	1910		
677 TP	1.18	2465		

Tolerances

Trajectory errors

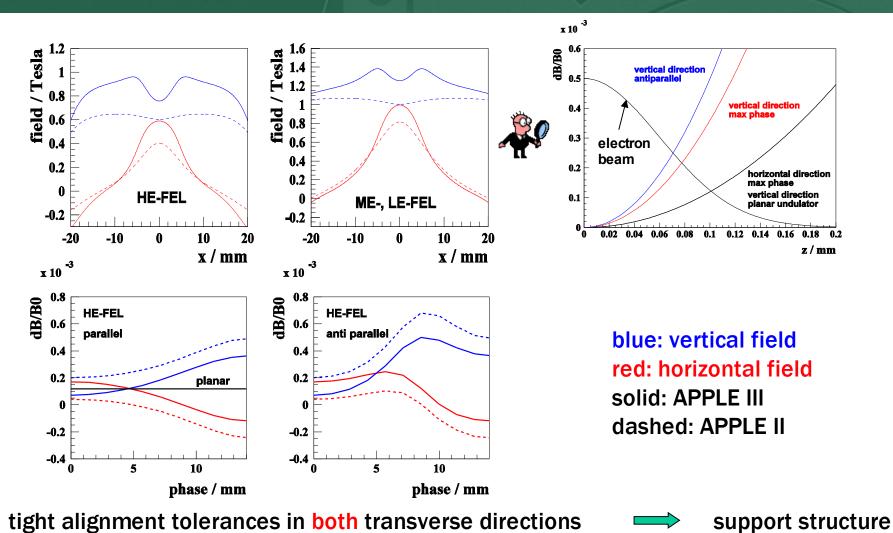
 $\int \int B \, dl \, dl' < 0.1\sigma \text{ of photon / electron beam} ≈ 5-10µm$ $\int \int B \, dl \, dl' < 17 \, \text{Tmm}**2 @ 1.0 \, \text{GeV}$ achievable with state < 38 $\text{Tmm}**2 @ 2.3 \, \text{GeV}$ of the art techniques

Phase errors

phase errors due to energy spread dominate over field errors if $\Delta \Phi_{\rm rms} < \sigma / \gamma \rho 1.73 \approx 6.6^{\circ}$ for the HE-FEL, achievable with sorting

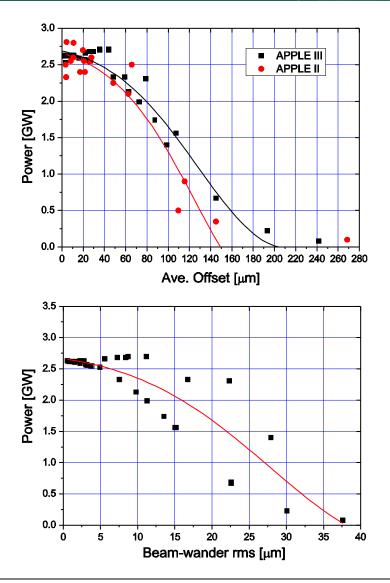
Multipole errors

less critical for single pass devices


Systematic field errors

ΔK / K ≈ 5 x 10⁴ ⇒ energy shift < 0.16 of bandwidth
 ⇒ gap positioning accuracy < 2µm ⇒ ΔK / K = 2 x 10⁴ demonstrated
 ⇒ temperature stability of magnets: ΔK / K = 2 x 10⁴ for ΔT=0.2°C temperature control of tunnel
 ⇒ transverse alignment tolerance < 40µm ⇒ ΔK / K = 2 x 10⁴

stiff structures for antiparallel motion, movable stages

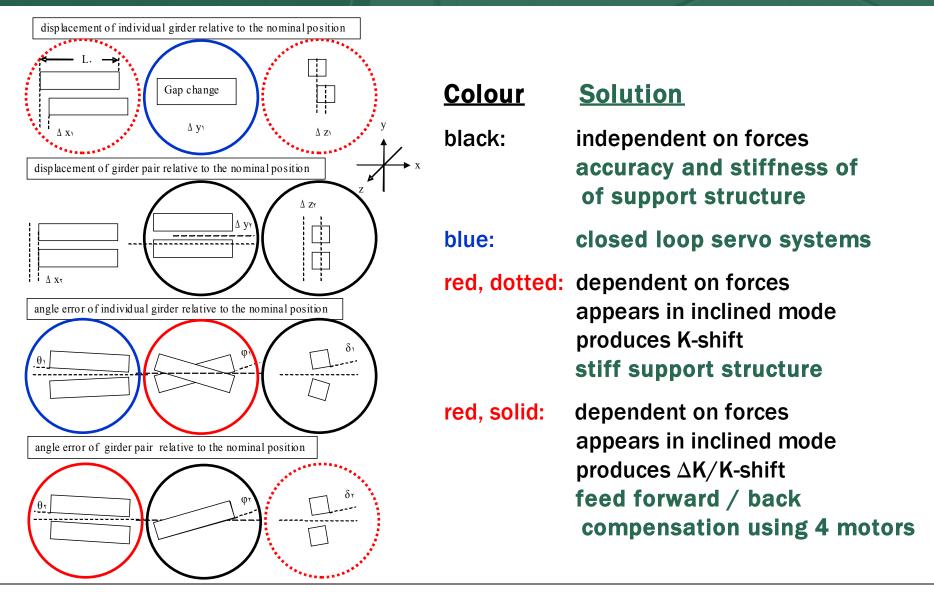

Good Field Region of APPLE IDs

APPLE III (solid) slightly relaxed as compared to APPLE II (dotted)

Transverse Alignment Accuracy

tolerance studies on the transverse positioning accuracy for APPLE III undulator (BESSY HE-FEL)

random transverse displacement of final amplifier undulator modules


simulation of trajectory wander and power degradation using GENESIS

40µm displacement is acceptable.

A. Meseck, J. Bahrdt, 27th, International FELConference, Stanford, Ca, 2005, pp47-50

Classification of Geometrical Tolerances

Dynamic Multipoles I

dynamic multipoles: second order effect

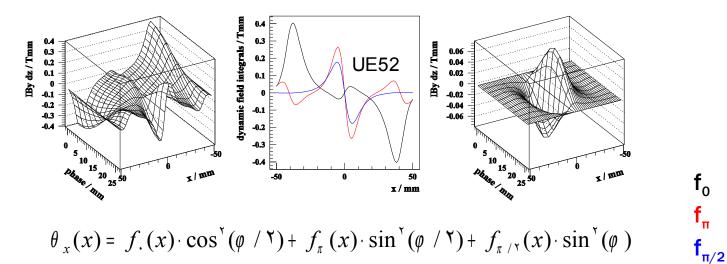
no straight line integrals, not measurable with moving wire

$$\theta_{x/y} = -\frac{1}{(B\rho)^{*}} \int \left\{ \int B_{x} dz' \int \frac{\partial B_{x}}{\partial x/y} dz' + \int B_{y} dz' \int \frac{\partial B_{y}}{\partial x/y} dz' \right\} dz$$

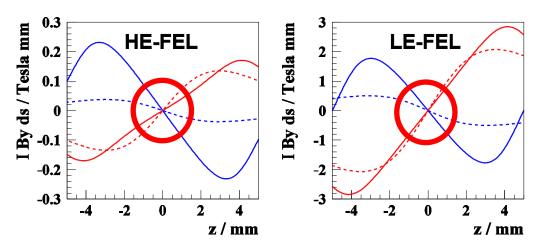
$$P B dl \propto B \cdot \frac{\partial B}{\partial z} \cdot \frac{\lambda_{u}}{E^{*}}$$

P. Elleaume, Proceedings of the EPAC 1992, pp 661-663

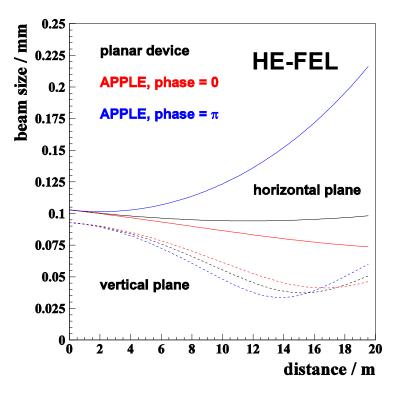
have to be regarded at:


- low and medium electron energies (less critical for X-FEL)
- long period lengths
- high fields, large transverse gradients (e.g. high field wiggler, APPLE)

responsible for:


- natural vertical focussing, horizontal defocussing (APPLE)
- impact on dynamic aperture via higher order terms (less important for single pass devices)

Dynamic Multipoles II

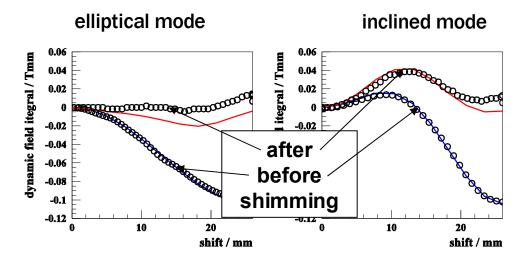


blue: phase = 0 red: phase = π solid: APPLE III dashed: APPLE II (field scaled to APPLE III value) module length: 3m

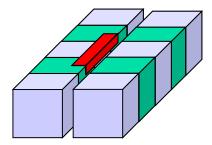
Beam Size Variation

dynamic quadrupole modifies the electron beam size

$$K_{x} = \frac{\mathbf{\tilde{r}} \cdot e^{\mathbf{\tilde{r}}}}{(\mathbf{\tilde{\gamma}}mc)^{\mathbf{\tilde{r}}}} k_{x-eff} \cdot k^{\mathbf{\tilde{r}}} \cdot (\sum_{n=1}^{\infty} (B_{xn}^{\mathbf{\tilde{r}}} + B_{yn}^{\mathbf{\tilde{r}}})$$
$$k_{x-eff} = \sum_{n=1}^{\infty} \frac{B_{xn}^{\mathbf{\tilde{r}}} \cdot k_{xxn}^{\mathbf{\tilde{r}}} / n! + B_{yn}^{\mathbf{\tilde{r}}} \cdot k_{xyn}^{\mathbf{\tilde{r}}} / n!}{B_{xn}^{\mathbf{\tilde{r}}} / n! + B_{yn}^{\mathbf{\tilde{r}}} / n!}$$

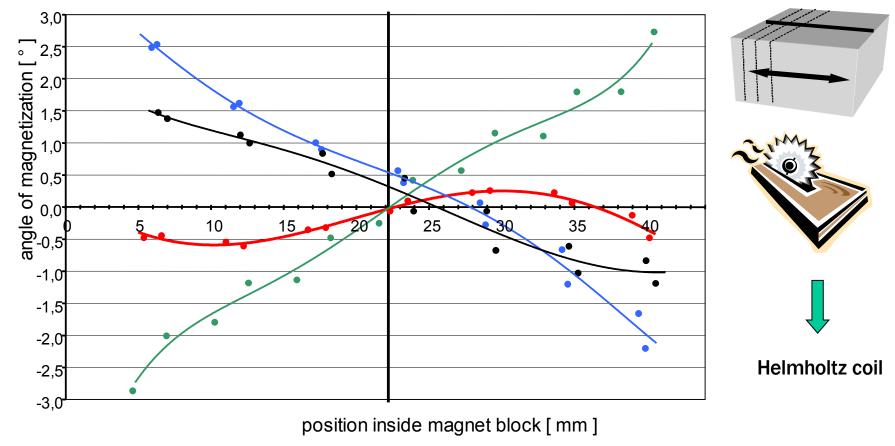

focussing is stronger for the other FELs
by a factor of:
9 ME-FEL
45 LE-FEL

adaptive focussing is essential for optimum overlap of electron beam and photon beam effects can partly be compensated with Fe shims



Reduction of Dynamic Quadrupole

J. Bahrdt et. al., SRI 2006, Daegu, Korea



J. Chavanne et al., Proceedings of the EPAC 2000, Vienna, Austria, pp 2346-2348

scheme works fine for parallel mode for APPLE II devices additional (active) schemes are necessary in inclined mode applicability to APPLE III design has to be checked

Magnet Block Inhomogeneities

Courtesy of Vacuumschmelze, Hanau

Improvement of Magnetic Material

BMBF-Verbundprojekt:

Optimierung der Homogenität von Nd-Fe-B Magneten

Förderkennzeichen: 03X4501A

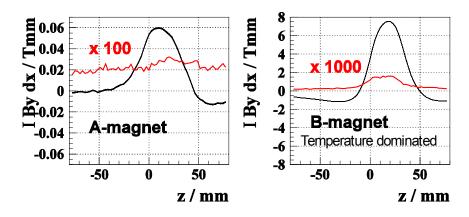
VAC, BESSY, Associated partners: DESY, SIEMENS, Applied Films

Improved magnet quality will assure:

- reduced time required for block characterization, sorting, shimming
- reduced production cost

Magnet Block Characterization

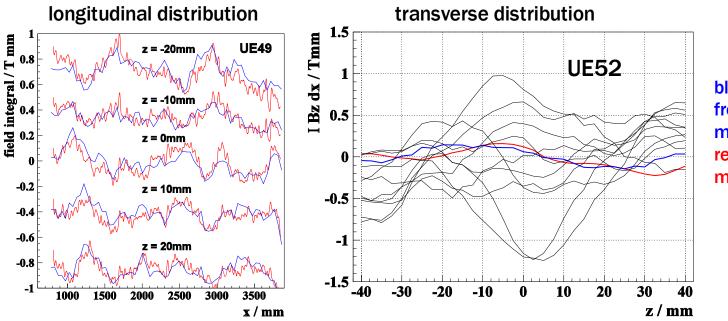
Today, block characterization is essential for an effective sorting improved magnetic material will reduce production cost


automated Helmholtz coil system for measurement of dipole moment

stretched wire system for characterization of inhomogeneities

new measuremenmt setup: reproducibility:

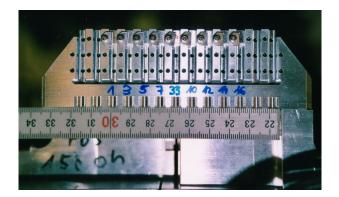
2.0 x 10⁴ Tmm
3.0 x 10⁴ rel.
1.5 x 10 ⁻³ Tmm
2.1 x 10⁴ rel.



Field Optimization I

How to meet the FEL-field tolerances A) single block characterization and initial sorting and in-situ sorting B) shimming

 A) excellent agreement between predicted and measured fields integrals for BESSY undulators UE52, UE49, UE112 efficient sorting procedure


blue: prediction from single block measurements red: hall probe measurements

Field Optimization II

B) Special shimming techniques for APPLE devices

- trajectory and phase shimming by virtual shimming (transverse block movement)
- shimming of shift dependent field integrals with Fe shims
- shimming of shift independent field integrals with magic fingers
- shimming of dynamic multipoles with FE shims

adjustable permanent magnet arrays at both ends of the device

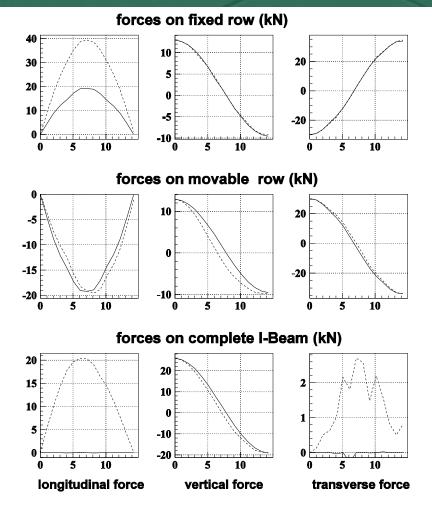
J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer, U. Englisch, Nucl. Instr. and Meth. 516 (2004) 575-585.

Specifications of Support and Drive System

handling of strong forces in all three directions (APPLE), forces change sign with shift! tapering

cast iron structures flexible joints

ÈSSY

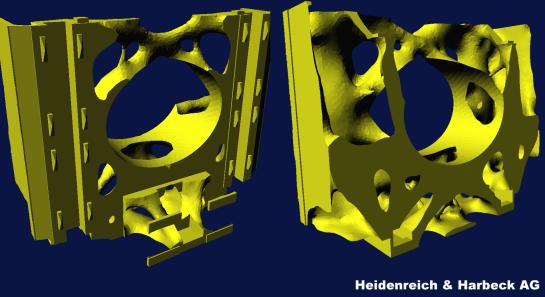

reproducibility of gap and phase on 1µm level

servo motors, feed back loop advanced measurement concept

optimization of magnet girder

detailed FEM studies

forces of HE-FEL in parallel (solid) antiparallel (dashed) mode forces of ME- and LE-FEL are roughly a factor of two larger



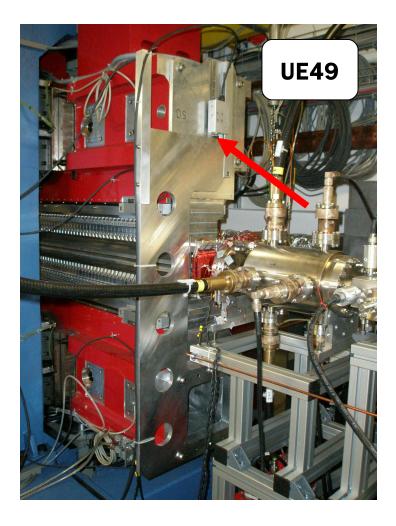
Bionic Optimization

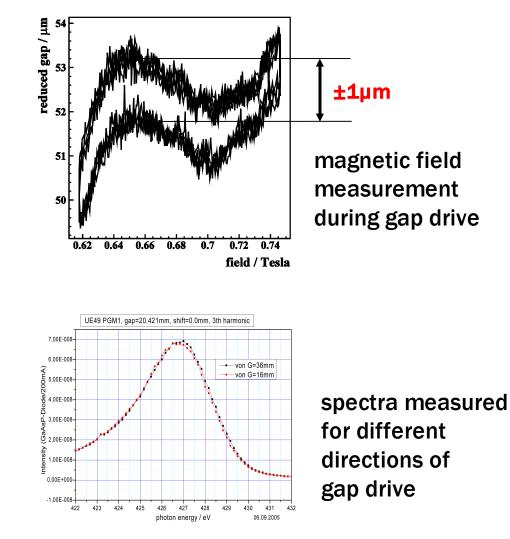
learning from nature

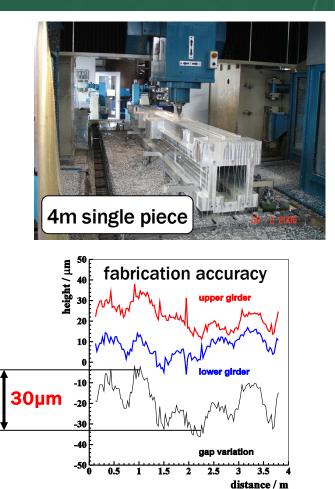
Topology optimization with TOSCA

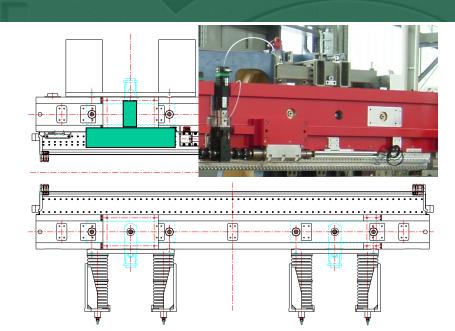
mass reduction at location with low stress addition of mass at locations with high stress

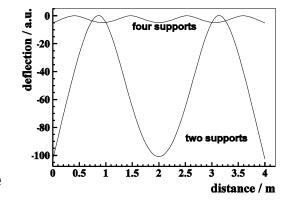
transformation of optimized structure into structures compatible with existing fabrication techniques is not yet automated


model options for cast iron structures


wooden models:many casts possible, cost effective for series productionpolystrene models:reduced costs for prototype fabricationonly core model:reduced costs for prototype fabrication (new technology)


Gap Positioning Accuracy

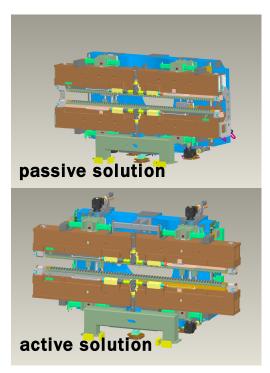




Magnet Girder

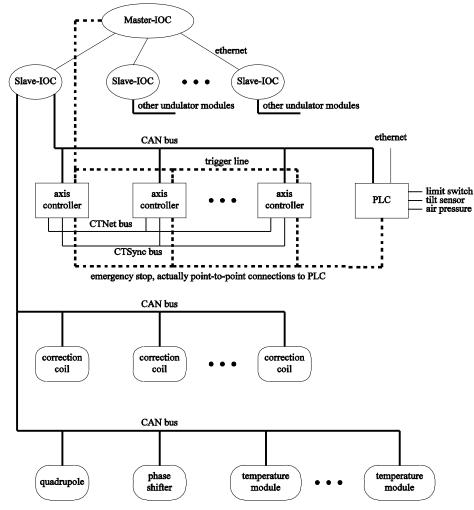
support at four locations for bending minimization (realized at BESSY IDs UE49, UE46, UE112)

residual fluctuations can be compensated with spacers


Girder Optimization

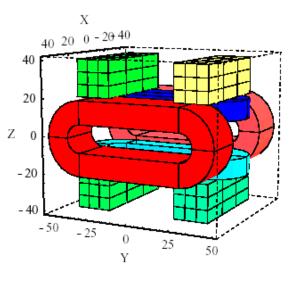
Passive solution:

The correct positioning of the longitudinal fixed bearing is essential to avoid:


- 5. girder inclination
- 6. girder bending

Motion Control, Operation

Control System for one module


ESSY

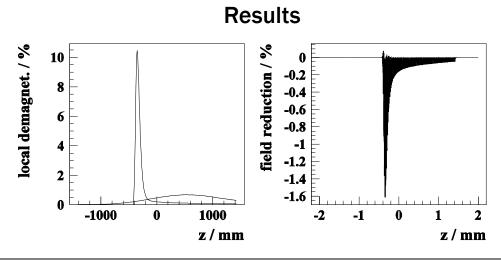
Reproducibility is required:

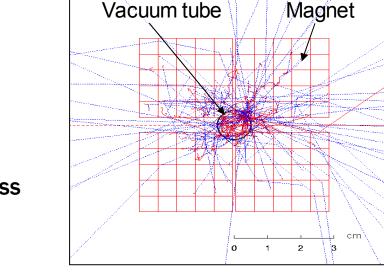
- air coils (no iron)
- permanent magnet quadrupoles
- permanent magnet phase shifter

phase shifter + air coil unit

Beam Loss Simulations with GEANT

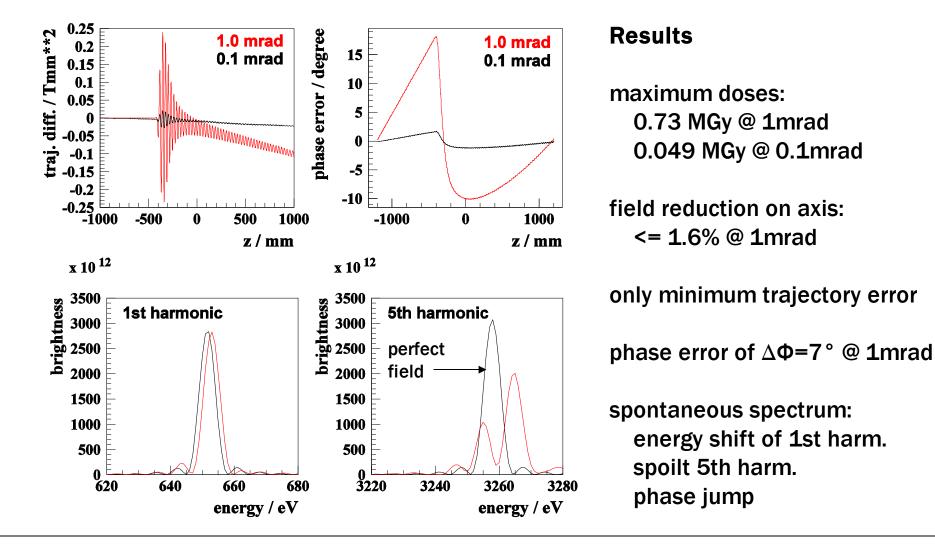
Model for simulations

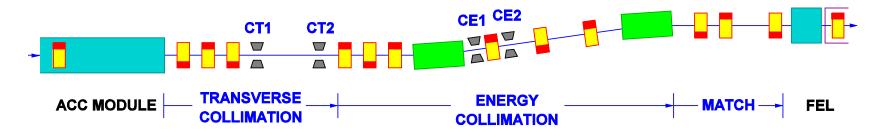

APPLE III geometry


ESSY

- circular vacuum pipe
- electron beam hits one magnet row at
 - i) 1 mrad
 - ii) 0.1mrad
- 70kGray (red. Dose) for 1% remanence loss
- segmentation of magnets:
 - i) 5 x 5 (1mrad)
 - ii) 7x7 (0.1mrad)

Procedure


- dump 300.000nC into the vacuum pipe at one location
- get doses inside magnet segments
- derive local demagnetization
- get spectra from modified magnets


Analysis of Field Data

Collimation System for BESSY FEL

transverse: $\pm 30 \sigma$ longitudinal: 5%

Experience at FLASH Phase I (with transverse collimator): maximum detected dose over 3 years = 12 kGy remeasuring undulator: ΔB / B < 2 x 10⁻⁴ (no changes within measuring accuracy)
PHASE II (dogleg collimator) a few ten Gy per week for aligned e-beam

- Magnetic field tolerances can be achieved with specific techniques
- Stiff structures can handle 3D-forces
- Closed loop servo systems for gap, phase provide 1µm accuracy
- Alignment is challenging due to small good field region of APPLE
- Complex control system, compensation of undulator focussing
- Machine protection system for undulator magnets is required

Acknowledgement

H. Bäcker J. Bakus W. Frentrup A. Freter M. Fuhrmann A. Gaupp S. Gottschlich G. Pfeiffer **M. Scheer B.** Schulz F. Stahr H. Wolf

and many more

