Status of Japanese XFEL Project and SCSS Test Accelerator

Tsumoru Shintake & SCSS-XFEL Team RIKEN/SPring-8, Japan

- 2001-2003 : R&D on electron gun, alignment devices, C-band,...
- 2004~2005: Construction of 250 MeV Prototype Accelerator
- 2006, June 20: Lasing at 49 nm, in SCSS Prototype Accelerator
- XFEL Project, 8 GeV, 1 Å has been approved, January 2006.
 - Construction 2006~2010.
 - First beam: ~2010

XFEL Project at SPring-8/RIKEN

SCSS: SPring-8 Compact SASE Source

T. Shintake, Advanced Electron Beam Physics Laboratory

Milestone of SPring-8 X-FEL

SCSS & X-ray FEL Beam Parameter

at undulator section

	Prototype	X-ray FEL	
Beam Energy E	0.25	8.0	GeV
X-ray Wavelength λ	60	0.1	nm
Beam Emittance ε _n	2	1.0	πmm.mrad
Bunch Length Δz	150	75	μ m
FWMH	0.5	0.25	psec
Transverse Beam Size σ _{x,y}	100	25	μ m
Peak Current <i>I</i> p	1	4	kA
Charge per bunch q	0.5	1	nC
Undulator Parameter λu	15	18	mm
K	1.3	1.3	
Length L	9	80	m
FEL Saturation Length Lsat	10	80	m

CeB₆ Cathode & Heater Assembly

- CeB₆ Cathode 3 mm Diameter
- Emittance 0.4 π.mm.mrad (thermal emittance, theoretical)
- Beam Current 3 Amp. at 1450 deg.C (using graphite heater)
- Current Density > 40 A/cm²

APAC2004 MOP-20006 K. Togawa (SPring-8/RIKEN) et.al.

Emittance Measurement for the SCSS Electron Gun

Beam Energy : 500 keV Beam Current : 1.0 A (peak) Pulse Width : 3 µs (FWHM)

Normalized Emittance (ɛn,RMS)

Experiment: 1.1 π .mm.mrad at Gun

In-Vacuum Undulator for SCSS X-FEL

- Segment length 4.5 m
- N = 300/segment, λ_u =15mm
- K~1.3, at Nominal gap 3.5 mm
- Mechanical minimum gap = 2mm
- 45-deg. tilted Halbach type
- More compact than ordinary ones

T. Shintake, Advanced Electron Beam Physics Laboratory

First prototype model

Gap can full-open 25 mm, which provides optical alignment laser pass, and enough beam acceptance at the beam commissioning time.

BPM Alignment System for SASE FEL

Cavity-BPM (Beam Position Monitor)

- TM110 mode excitation amplitude provides very linear beam position information.
- Slot-coupling design isolates TM110 BPM signal from TM010 common-mode mixing, which cause position offset.
 - Electrical center meets
 very accurately with
 mechanical center in a
 few micron-meter
 (insensitive to variation of
 cable length, or detection
 circuit details).

Stable Support using Cordierite Ceramic

Compact HV Pulse Modulator Supply

- Driving 50 MW klystron, and 500 kV electron gun.
- Compact, Oil Filled Design
 W 1.7 m x D 1.2 m x H 1m.
- Good EMI shield.
- Better cooling for HV component.
- Eliminating cooling air fan.
- No dust accumulation due to high voltage in air.
- No environmental effects: moisture and temperature variation.

SCSS Test Accelerator

First Lasing at SCSS Prototype Accelerator.

Schedule & Conclusion

- SCSS Prototype Test Accelerator:
 - HHG seeding test 60 nm. Autumn 2006, G. Lambart, this EPAC06.
 - UVU user run will start 2007.
- XFEL Construction 2006 2010
 - Big construction, 80 klystrons
 - 400 m C-band Accelerator
- Remain R&D Items
 - Power supply stability improvement 0.1 % \rightarrow 0.01 %
 - L-band buncher accelerator (L-band APS 1m x 2, 20 MW klystron)
 - C-band or X-band flat-topping accelerator \rightarrow increase charge.
 - LORA bunch length monitor.
 - In-situ field measurement tool for undulator.

Thank you very much!

