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We are entering a new era in x-ray science
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Radiation damage 
affects atomic 

scattering factors and 
atomic positions

50 fs
4x1014 photons/μm2

12 keV

Coulomb explosion of Lysozyme

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. Hajdu, J. (2000) Nature 406, 752-757



Radiation damage affects 
atomic positions and atomic 

scattering factors

Coulomb explosion of Lysozyme

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. Hajdu, J. (2000) Nature 406, 752-757
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X-ray free-electron lases may enable atomic-resolution imaging 
of biological macromolecules

One measurement

Combine 105-107 measurements

Classification Averaging Orientation Reconstruction

Noisy diffraction pattern
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pulse
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We have carried out experiments at the first soft-X-ray 
FEL in the world

FLASH at HASYLAB, DESY
• User facility, FEL radiation to 6 nm wavelength
• Initial FEL Operation August 2005 at 32 nm and <30 fs pulses, 1013 photons



Our diffraction camera can measure forward scattering 
close to the direct soft-X-ray FEL beam 

Multilayer reflectivity is uniform across 
the 30° to 60° gradient 

“Soft edge” prevents any 
scatter from the hole  



Coherent diffractive imaging is lensless

Use a computer to phase the scattered light, rather than a lens

θ
λ

θ
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Resolution: δ = λ /sinθ

Prior knowledge 
about object

Algorithm

A lens 
recombines the 
scattered rays 
with correct 
phases to give 
the image

An algorithm finds 
the phases that 
are consistent with 
measurements 
and prior 
knowledge

First demonstration with X-rays: John Miao, 
P. Charalambous, J. Kirz and D. Sayre, Nature 400 (1999)



The reconstruction is carried out to the diffraction limit 
of the 0.26 NA detector

32 nm, one wavelength

Single pulse FELSEM
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The sample is quite damaged by the FEL pulses

10 micron

FIB “cowboy” sample after FEL exposure

before

Silicon frame

Melted silicon nitride



We have performed full 3D X-ray imaging of non-
crystalline material at 10 nm resolution

Coherent X-ray diffraction data λ =1.6 nm, from a sample of 
50-nm gold spheres arranged on a pyramid

Complete image reconstruction achieved, without any prior 
knowledge, using our “shrinkwrap” algorithm, parallelized
for 3D on 16-node cluster.  Resolution = 10 nm

Coherent X-ray diffraction data, 
rotating the sample -70 to +70 
degrees (5×108 data points)

1 micron

SEM image of 3D pyramid test object





Particle explosion experiments were performed on latex 
particles on membranes

357 windows per chip
SEM of particles

1mm

Half beam diameter 
(10 μm) - 220 

particles

Mounted on piezo x-y stage 
to move each window into 
beam

25 
mm

•The particle size is determined 
by Mie scattering of the VUV-
FEL pulse by the particles  (FEL 
pulse is both pump and probe)
•To see a 5% change in radius 
during pulse, require size 
distribution of ~1%.  50 

mm

15º

100 μm

20 nm thick 
silicon nitride 



Scattering from balls demonstrates that they retain their 
shape throughout the duration of the pulse



Our VUV hydrodynamic code shows that latex spheres 
start exploding in ~ 2 ps

Incident pulse direction
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The explosion takes longer than expected from our 
hydrodynamic model

• Experiments and simulations show a similar trend of the particle exploding
• The onset of explosion occurs later than predicted
• Measurements will be improved with better pulse diagnostics and shorter 

wavelength
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First EUV-FEL experiments show that structural 
information can be obtained before destruction

During 30 fs pulse (1014 W cm-2)
32 nm wavelength

After pulse Plasma forms, layers ablate

40 micron

Nomarski micrograph of crater

Reflectivity unchanged
Multilayer d spacing not changed by 

more than 0.3 nm

Si/C multilayer

30 fs pulse reflectivity at 32nm
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There is no motion at 3Å during the pulse, but the 
change in optical constants is larger than expected
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Our model predicts atomic resolution imaging is feasible

0 fs 25 fs 50 fs
20 Å radius 
protein

20 Å radius 
protein with 
water 
tamper

XFEL pulse 
intensity

S. Hau-Riege, R. London, A. Szoke, G. Huldt
Phys. Rev E 69 051906 (2004); Phys. Rev E 71 061919
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