Ultrafast Coherent Diffraction Imaging with a Soft X-Ray Free-Electron Laser

Henry Chapman, LLNL

FEL 2006, 1st September

This work was performed under the auspices of the U. S. DOE by LLNL under Contract No. W-7405-ENG-

Acknowledgements

LLNL: Sasa Bajt, Anton Barty, Henry Benner, Micheal Bogan, Henry Chapman, Matthias Frank, Stefan Hau-Riege, Richard Lee, Richard London, Stefano Marchesini, Tom McCarville, Alex Noy, Urs Rohner, Eberhard Spiller, Abraham Szöke, Bruce Woods

- Uppsala: Janos Hajdu, Gösta Huldt, Carl Caleman, Magnus Bergh, Nicusor Timeneau, David van der Spoel, Florian Burmeister, Marvin Seibert
- UC Davis: David Shapiro
- SLAC: Keith Hodgson, Sebastien Boutet
- DESY: Thomas Tschentscher, Elke Plönjes, Marion Kulhman, Rolf Treusch, Stefan Dusterer, Jochen Schneider
- TU Berlin: Thomas Möller, Christof Bostedt, Matthias Hoener

We are entering a new era in x-ray science

ALS=Advanced Light Source (LBNL)

Coulomb explosion of Lysozyme

20 fs 4x10¹⁴ photons/µm² 12 keV

Radiation damage affects atomic positions and atomic scattering factors

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. Hajdu, J. (2000) Nature 406, 752-757

X-ray free-electron lases may enable atomic-resolution imaging of biological macromolecules

Combine 10⁵-10⁷ measurements

We have carried out experiments at the first soft-X-ray FEL in the world

FLASH at HASYLAB, DESY

- User facility, FEL radiation to 6 nm wavelength
- Initial FEL Operation August 2005 at 32 nm and <30 fs pulses, 10¹³ photons

Our diffraction camera can measure forward scattering close to the direct soft-X-ray FEL beam

Coherent diffractive imaging is lensless

Use a computer to phase the scattered light, rather than a lens

Resolution: $\delta = \lambda / \sin \theta$

First demonstration with X-rays: John Miao, P. Charalambous, J. Kirz and D. Sayre, Nature **400** (1999)

The reconstruction is carried out to the diffraction limit of the 0.26 NA detector

transfer function gives an estimate of the resolution of the reconstructed image

The sample is quite damaged by the FEL pulses

before

We have performed full 3D X-ray imaging of noncrystalline material at 10 nm resolution

Coherent X-ray diffraction data, rotating the sample -70 to +70 degrees (5×10^8 data points)

SEM image of 3D pyramid test object

Coherent X-ray diffraction data $\lambda = 1.6$ nm, from a sample of 50-nm gold spheres arranged on a pyramid

Complete image reconstruction achieved, without any prior knowledge, using our "**shrinkwrap**" algorithm, **parallelized** for 3D on 16-node cluster. Resolution = 10 nm

Particle explosion experiments were performed on latex particles on membranes

Scattering from balls demonstrates that they retain their shape throughout the duration of the pulse

Our VUV hydrodynamic code shows that latex spheres start exploding in ~ 2 ps

The explosion takes longer than expected from our hydrodynamic model

- Experiments and simulations show a similar trend of the particle exploding
- The onset of explosion occurs later than predicted
- Measurements will be improved with better pulse diagnostics and shorter wavelength

First EUV-FEL experiments show that structural information can be obtained before destruction

With J. Kryzwinski, R. Sobierajski, L. Juha et al

There is no motion at 3Å during the pulse, but the change in optical constants is larger than expected

Our model predicts atomic resolution imaging is feasible

S. Hau-Riege, R. London, A. Szoke, G. Huldt Phys. Rev E **69** 051906 (2004); Phys. Rev E **71** 061919

Acknowledgements

LLNL: Sasa Bajt, Anton Barty, Henry Benner, Micheal Bogan, Henry Chapman, Matthias Frank, Stefan Hau-Riege, Richard Lee, Richard London, Stefano Marchesini, Tom McCarville, Alex Noy, Urs Rohner, Eberhard Spiller, Abraham Szöke, Bruce Woods

- Uppsala: Janos Hajdu, Gösta Huldt, Carl Caleman, Magnus Bergh, Nicusor Timeneau, David van der Spoel, Florian Burmeister, Marvin Seibert
- UC Davis: David Shapiro
- SLAC: Keith Hodgson, Sebastien Boutet
- DESY: Thomas Tschentscher, Elke Plönjes, Marion Kulhman, Rolf Treusch, Stefan Dusterer, Jochen Schneider
- TU Berlin: Thomas Möller, Christof Bostedt, Matthias Hoener

