

Asymmetric SRF dual axis cavity for ERLs: studies and design for ultimate performance and applications

I. V. Konoplev¹, M. Topp-Mugglestone¹ <u>Ya. Shashkov²</u>, A. Bulygin² F. Marhauser³, A. Seryi³

¹ JAI, Department of Physics, University of Oxford
² National Research Nuclear University MEPhI
³ Thomas Jefferson National Accelerator Facility

Imperial College London Royal Holloway

UH-FLUX: AERL

Aim:To surpass any existing designs of ERL in the e-beam current handling capabilities and footprint Scientific Impact: High Current ERL for Compton light source and FEL

INTEGRATE STATES OF THE AND EUV REPORTS OF T

UNIVERSITY OF

OXFORD

Royal Holloway University of London

Imperial College

London

Applications

Application in Ultra-High Intensity source of coherent radiation

THz Application: security

control

Quality and contents

Imperial College

London

Royal Holloway University of London

UNIVERSITY OF

DXFORD

<u>THz Application</u>: Produce radiation at high power (up to 1MW) from 0.1 THz to 10 THz **Markets (outside research laboratories)**:

- Cargo Screening: The World Market for Explosives, Weapons, and Contraband Detection Equipment (EWC) is estimated to be some \$2.1 billion annually¹
- Replacing X-ray scanners: The global security screening market is expected to reach \$9.10 Billion by 2020²
- Non-contact imaging of coatings and composites, material quality control, drug formulation ¹The Market for Explosives, Weapons and Contraband (EWC) Detection Equipment – HIS Technology, 2014 Edition ²Security Screening Market - Analysis and Forecast 2013-2020 – MarketsandMarkets, 2014 Edition

Applications

EUV Applications: lithography - moving to ~10nm and QAs

EUV Applications: Generating electron beams of typical energy of 10-30 MeV and current above 1A to generate high flux $(10^{18} - 10^{20} \text{ photon per second})$ of radiation from 1nm to 10nm wavelengths range

Markets (outside research laboratories):

- Non-destructive sources and material/medical diagnostics research market
- Lithography for the £332 billion Semiconductor Industry: \$7 billion market in 2014³ ³Investor Day, ASML Small Talk London - 2015

Imperial College

London

Royal Holloway University of London UNIVERSITY OF

FORD

Proof of the concept experimental studies

Imperial College London

UH-FLUX: AERL 7 Cell cavity

Results observed using CST- Microwave studio

Imperial College London Royal Holloway University of London UNIVERSITY OF

Experimental studies: proof of the concept

Aluminium 7 cells cavity

Aim:

- to identify the cavity modes: operating and HOMs

Imperial College

London

UNIVERSITY OF

OXFORD

Royal Holloway University of London

- to compare with numerical data

Starting measurements

Measuring S_{11} and S_{21} parameters as well as field structure

Imperial College London **VNA** Cable

Coaxial Cable

Copper

7

Royal Holloway University of London UNIVERSITY OF OXFORD

Eigenmodes of the 7- Cell cavity

Predicted by CST Microwave studio

Field structures of the eigenmodes predicted by CST

Imperial College London Royal Holloway University of London UNIVERSITY OF

Pass band modes: experimental studies

Royal Holloway

University of Londor

Imperial College

London

UNIVERSITY OF

OXFORD

Pass band modes: experimental studies

The RF coupler is located on one axis (active) while the field measurements are conducted on both axes

200

Royal Holloway University of London UNIVERSITY OF

OXFORD

Red line active axis Blue line passive axis

Imperial College London 14 first HOMs and the Bridge mode

Imperial College

London

Royal Holloway University of London UNIVERSITY OF

centre of the bridge

HOMs measurements

Imperial College London

UNIVERSITY OF

Imperial College London

Cavity optimisation

Imperial College London Royal Holloway University of London 20

UNIVERSITY OF

JLAB dual axis cavity

The cavity was used as a prototype during the optimisation It was considered as an indication that such structure can be machined

Parameter	Value	Units
Cavity height	202.5	mm
Cavity width	300.0	mm
Cavity length	100.13	mm
Cell length	81.13	mm
Iris curvature	8.0	mm
Beam aperture	60.0	mm
Beam axis separation	136.5	mm
Vacc	0.1	MV
$E_{\rm p}/E_{\rm acc}^*$	2.68	
$B_{\rm p}/E_{\rm acc}^*$	5.5	mT/(MV/m)
[R/Q]	60.1	Ω
G	320.8	Ω
R _t R _s	1.93×10 ⁴	Ω^2
LOM	1103	MHz
Nearest HOM	1806	MHz
Vt	26.4	V
*At $E_{\rm acc} = 1$ MV/m		

7Ai

Imperial College London Royal Holloway University of London UNIVERSITY OF

OXFORD

Bridge optimisation

- Resolved high field risk
- Improved the modes proximity
- Resolve the challenge with multipacting

	Initial new bridge 11 cells/ TT end reg	U – структура 11 cells TLL end reg
Operating mode Frequency (GHz)	1.299995	1.299961
Nearest mode frequency (GHz)	1.299485	1.299418
E_p/E_a	2.91	2.28 (more than 20% improvement)
$B_p/E_a(mT/MV/m)$	6.32	4.43 (around 30% improvement)
R/Q (Ohm) axis 1	330	406
R/Q (Ohm) axis 2	333	273
V _z (MV) axis 1	1.65	1.82
V _z (MV) axis 2	1.64	1.49
R/Q (Ohm) - axis 1 nearest mode	249	196
<i>R/Q</i> (Ohm) - axis 2 nearest mode	240	338

Imperial College London

- The aluminium (7-cells) and copper (11-cells) dual axis asymmetric cavities were constructed
- Preliminary studies of HOMs and path-band modes were carried out and HOMs localisation has been demonstrated
- The first design of the SRF dual axes asymmetric cavity has been completed

Thank you!

Imperial College

Iondon

Royal Holloway

