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Abstract

bERLinPro is an Energy Recovery Linac (ERL) project
currently being set up at HZB, Berlin. It is intended as
an experiment in accelerator physics, to pioneer the pro-
duction of high current, low emittance beams in a fully
super-conducting accelerator, including SRF gun, booster
and linac. RF-Commissioning of the gun is planned in mid
2020, [1]. HZB triggered and partially supported the devel-
opment of release 2.0 of the particle tracking code OPAL [2].
OPAL is set up as an open source, highly parallel tracking
code for the calculation of large accelerator systems and
many particles. Thus, it is destined for serving attempts
of applying machine learning approaches to beam dynamic
studies, as demonstrated in [3]. OPAL is used to calculate
hundreds of randomized machines close to the commission-
ing optics of bERLinPro. This data base is used to train a
polynomial chaos expansion, as well as a neural network, to
establish surrogate models of bERLinPro, much faster than
any physical model including particle tracking. The setup of
the sampler and the sensitivity analysis of the resulting data
are presented, as well as the quality of the surrogate models.
The ultimate goal of this work is to use machine learning
techniques during the commissioning of bERLinPro.

INTRODUCTION

As any linear accelerator, an ERL is an initial value prob-
lem: without exact knowledge of the initial parameters of the
beam, a later understanding and characterization of the beam
parameters is difficult. Therefore, a thorough understanding
of the gun is indispensable. Before the gun is assembled
and tested, many ambiguities exist, starting from the actual
energy of the beam, i.e. the gun field reachable with tolera-
ble field emission, over the bunch parameters, to the system
parameters leading to successful acceleration. As the sys-
tem is heavily space charge dominated with bunch charges
of 77 pC, tracking calculations including space charge take
minutes to hours, depending on the size of the considered
structure, the number of particles and the grid size, even
with a highly parallized code like OPAL. It is tempting to
try to replace the tracking calculations by surrogate mod-
els, that deliver answers very close to tracking results in
much shorter time, in the order of milliseconds. That would
enable ’online modeling’ in the control room, where the
surrogate model is fed by machine parameter read-backs and
would deliver expectation results for beam measurements.
The paper presents first steps in setting up surrogate mod-
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els for the diagnostics line of bERLinPro, where the gun
is characterized. It makes strong use of earlier work and
experience, published in [3] and [4]. It is intended to use
surrogate models to ease and to speed up commissioning.

DIAGNOSTICS LINE

The diagnostics line consists of the 1.3 GHz, 1.4 cell, sin-
gle cavity SRF gun, providing up to 3 MeV electrons with a
design bunch charge of 77 pC. The gun module also hosts
two corrector coils (H/V) and a cold solenoid. The booster,
hosting three two-cell cavities can boost the energy up to
6.5 MeV. The first cavity imprints a chirp on the bunch for ve-
locity bunching, while the other two cavities are run on crest
for acceleration. Further elements are 6 quadrupoles, a trans-
verse deflecting cavity, a spectrometer followed by a 300 W
Faraday cup, or, straight ahead, a 35 kW beam dump, Fig. 1.
Optics were developed including the booster (6.5 MeV) and
with three booster replacement quadrupoles (taken from the
recirculator) and 2.7 MeV. Four beam position monitors
(BPM) and two screens (FOM) are available for diagnostics.
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Figure 1: The diagnostics line is intended for the characteri-
zation of gun and booster and initial beam parameters.

Independent Modeling Parameters

The ambiguities in the gun parameters, prior to commis-
sioning, are caused by:

 production uncertainties like cavity geometry and field

flatness, i.e. the gun field

* changes during cool down of SRF structures (f.e. cath-

ode retraction position)

» ambiguities before first use (f.e. achievable max. gun

field amplitude).

In addition, the cathode laser pulse length, spot size and
intensity, the solenoid strength, the phases and amplitudes
of three booster cavities and the field of the six quadrupoles
in the beam line will determine the bunch properties. The
transverse beam size can be measured on the two screens
and four BPMs. The transverse deflecting cavity (TDC) and
the spectrometer in combination enable the measurement of
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E the full, 6D phase space. The emittance will be determined
5 by quadrupole scans using the first three merger quadrupoles.
Z See Fig. 2, where the 19 independent parameters are indi-
% cated. In order to predict the expected bunch properties for
+ all possible combinations of set points of the independent
S parameters, huge scans would be necessary. Even using
2 only three set points for each parameter, 3! = 1.16 x 10°
S possible combinations arise.
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Figure 2: The most relevant 19 parameters contributing to
the physics model of the diagnostics line of bERLinPro.

Therefore, there is a strong need to minimize the num-
* ber of independent parameters to ease commissioning and
= enable modeling. In order to thread the beam successfully
through the diagnostics line and enable first bunch measure-
ments, the following restrictions can be taken:

* Bunch charge, current: During commissioning, the

current will be limited to = 1 A defined by the tolerable
load on the screens. Measurements can be taken by
much lower currents, down to nA. Calculations show,
that the limit for the bunch charge to eliminate space
charge effects in the reference optics is about 0.1 pC
corresponding to 1 pA in single bunch mode at 10 Hz.
Low bunch charge also eliminates the dependance on
the laser intensity.
Quadrupole setting: The quadrupoles in front of the
screen in the merger can be set in a way to produce a
round beam on the screen. This is easily controllable.
Without space charge, the settings can be linearly scaled
to the achieved energy.

* Booster amplitudes and phases: We assume, that these
parameters can be well measured and keep them fixed
in the simulations.

* The two last quadrupoles serve to adjust the transverse
beam size into the dump. They are located behind
the diagnostics elements and need not be part of the
modeling.

This leaves six independent variables for the first commis-
sioning phase. The expected variation range and set points
used in the sampling run, are listed in Table ??. The five cath-
ode retreat positions and three field flatnesses are encoded
in 15 CST field files.

OPAL

OPAL is one of the few tracking codes, that includes a 3D
space charge routine, coherent synchrotron radiation effects

WECOYBSO4
124

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title

ERL2019, Berlin, Germany JACoW Publishing
doi:10.18429/JACoW-ERL2019-WECOYBS04

Table 1: Range and Number of Equidistant Set Points of the
Six Independent Parameters

Parameter Range Set point
Laser pulse length + 10% 3
Laser spot size + 10% 3
Gun field flatness 100, 113, 130% 3
Cathode retreat 0.5-1.5mm 5
Gun voltage 15-17MV/m 5
Solenoid field 0.035-0.065T/m 7
combinations 4725

and is open source. OPAL was planned from the beginning
as a highly parallelized tracking code for the calculation of
large accelerator systems and many particles, and its under-
lying structure has been developed by computer scientists
and mathematicians. HZB triggered and partially supported
the development of release 2.0 of OPAL, as no other code
was available at the time, that was suitable for the model-
ing of a high current, low energy ERL, such as bERLinPro.
OPAL can now cope with with specifics like double passage
through elements, and thus is a very adequate tool to study
this type of machines.

OPAL also offers a sampler option: in a single run it
allows for random, raster or mixed sampling of parameters
with different distribution functions. The results are stored
in a separate directory. This is a big advantage compered
to other optimization procedures, like swarm calculations
or generic optimizers, where most of the calculated data
is deleted and not accessible for later studies. Using the
sampler, a set of 4725 different realizations of the diagnostics
line has been calculated over the complete length of 14 m.
The calculations included space charge (to cover cases with
unintended beam waists) and 100.000 particles. On the
PSI cluster the run took 5 h, using 320 cores. It should be
mentioned, that this computational effort has to be invested
only once. The derived surrogate model, though, can be
used for further optimization and as an on-line model. Once
the data is available, it can be used in versatile ways:

e Data mining

* Polynomial chaos expansion

* Neural networks

* Other boost or regression algorithm
The latter three all create a surrogate model, that approxi-
mates the parameters of interest, but is MUCH faster than
the under-lying tracking calculations.

RESULTS
Data Mining

Data mining is a rich source for understanding the basic
mechanisms of the system, especially, if expectations based
on accelerator physics knowledge can be retrieved in the data.
As an example, one can look at the cases where particles
get lost in the diagnostics line. From optics development it
is known, that the rf focusing of the booster is strong, and
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the transverse beam size at the booster entrance is a critical
parameter. Figure 3 shows the number of stable particles at
10 m (left) and at 14 m (right) as a function of the rms beam
size at the beginning of the booster (round beam). Clearly,
all beams with transverse sizes larger than 1.5 mm will loose
particles before reaching the dump.
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Figure 3: Number of stable particles at 10 m, left, and at
14 m, right. There is a clear dependance on the transverse
beam size at the booster entry.

The correlation between four of the independent input
parameters and the beam size at the beginning of the booster
is displayed in Fig. 4. The distinct set values are visible.
Surprisingly, the cathode position has a larger impact on
the transverse beam size, than the laser spot size (within
the ranges studied). In order to reach transverse beam sizes
<1.5 mm at the entrance of the booster and secure particle
transport into the dump, the setting of the solenoid is the
most critical parameter. It has not been expected, that setting
the solenoid field to 0.055 T/m guarantees adequate beam
sizes for all other cases (red line). Selecting only cases with
the optimal solenoid setting, expectation values can now be
extracted for other beam parameters.
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Figure 4: The transverse beam size at the entrance to the
booster is displayed as a function of the cathode position,
the solenoid setting, the laser spot size and the gun voltage.
The red line indicates the goal of o <1.5 mm.

Polynomial Chaos Expansion

Polynomial chaos expansion (PCE) and its application
in accelerator physics is explained in detail in [4]. PCE is
applicable, whenever system parameters with a given un-
certainty or distribution are mapped by a physical model
or evolution, onto quantities of interest (Qol), that depend
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on these system parameters. As f.e. the laser pulse length
entering tracking calculations will lead to beam parameters
like the bunch length, that depend on the pulse length and
will have a distribution, that will depend of the distribution
of the laser pulses, Fig. 5.
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Figure 5: Polynomial Choas Expansion is a method to deter-
mine evolution in dynamical systems, when there is proba-
bilistic uncertainty in the system parameters.

It can be shown, that:

* the distribution space of the Qol always has an orthonor-
mal polynomial basis, i.e. every element in the Qol
space can be represented as a polynomial sum

* the kind of polynomials to be used depends on distribu-
tion of the independent variables (uniform < Lagrange,
Gaussian < Hermite, ...)

* the determination of the sum coeflicients reflects the
model involved (regression technique)

» PCE is applicable in multi-dimensions and for mixed
distributions

The mathematics behind PCE is conveniently wrapped up
in the python package *chaospy’, [5].

The PCE will always be trained with a subset of the avail-
able samples, in order to check the results with the left over
testing samples. The quality of the PCE model can be rep-
resented by plotting the results for a single Qol calculated
by tracking and calculated by PCE against each other. For a
perfect model all points would lie on the diagonal. Figure 6
shows the results for the horizontal emittance for different
sizes of training sets. While the prediction of the model
for the training samples is quite independent of the number
of samples used, the results for the testing samples differ
strongly. 1500 training samples were found to be sufficient,
no further improvement was found for more samples.

A further optimization parameter is the order of the poly-
nomials used in the expansion. Figure 7 compares the results
for the horizontal rms beam size at the screen in the merger
for third and sixth order polynomials. Blue dots represent
the results for the training data and red dots that for testing
samples. Sixth order polynomials show sufficient accuracy.

The accuracy of the PCE model might differ for different
parameters. This reflects the sensitivity of the Qol in the
system. The beam size in Fig. 7 is taken at the screen in the
merger. The beam goes through a waist close to the screen for
many samples. The position of the waist, and thus the beam
size measured on the screen, is sensitive to small changes
in all focusing parameters. For comparison, the results for
the bunch length (left) and the energy (right) are shown in
Fig. 8. While the energy is perfectly matched independent
of the polynomial order, the bunch length profits from using
sixth order polynomial (blue dots).
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Figure 7: Results for the horizontal beam size, using third
(left) and sixth order (right) polynomials. Red dots display
the results for test particles, blue dots that of the training
particles.
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Uncertainty Quantification

Having developed a PCE from calculated or measured
samples, it is straight forward to calculate Sobol’s indexes,
for details refer to [4]. The first order PC-based Sobol’s
indexes represent the individual effects of a single random
input parameter on the variability of the output. Figure 9
shows the uncertainty quantification for eight quantities of
interest and six independent input parameters, taken at the
end of the diagnostics line. Many dependencies are expected
from accelerator physics knowledge: the dependence of en-
‘q"é ergy on the field flatness or the importance of the solenoid
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Figure 6: Results for the horizontal emittance calculated by the surrogate model and by tracking. 500 (left), 1000 (center),
and 1500 (right) training samples (top) and the same number of testing samples (bottom) were used. 1500 training samples
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Figure 8: Results for the bunch length (left) and the energy
(right). Third order polynomial expansion is shown in red,
sixth order in blue.

field for the beam size and emittance. The dominant impor-
tance of the gun voltage for the bunch length, is less obvious.
Higher gun voltage and higher field flatness lead to increased
bunch length and increased energy spread at the exit of the
gun. The dependance is enhanced by velocity bunching in
the booster, see Fig. 10, and diminishes slightly towards the
end of the line.

The seemingly obvious impact of the laser pulse length
on the bunch length turns out to be negligible. Due to the
lack of space charge effects in the sampling data, the bunch
length is dominated by the velocity difference due to varying
fields after emission from the cathode. The change in field
flatness (100 —130 %) has a larger influence on the particle
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Figure 9: Sensitivity analysis of 4725 samples evaluated at
the end of the diagnostics line. Blue: field flatness; light
blue: cathode position; orange: laser pulse length; green:
solenoid field; light green: laser spot size; red: gun voltage.
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Figure 10: The dependence of the bunch length on the gun
voltage. Behind the gun (blue), after compression in the
booster (orange) and at the end of the line (green).

energy, than the variation of the gun voltage between 15 and
17 MV/m. After warm measurements of the field flatness,
this ambiguity can be largely decreased. Sensitivity quantifi-
cation helps to sort the importance of machine parameters,
when trying to achieve specific bunch parameters. It is im-
portant to note, that the sensitivities can vary over the beam
line.

Neural Network

A four layer, fully connected artificial neural network
has been trained on the same sample data. The results for
training data (left), as well as for the test data (right), at
the screen in the merger, are displayed in Fig. 11, for the
horizontal emittance. Both approaches seek qualitatively
good results. For the training data, the mean average error
(MAE) between both models, PCE and ANN, and OPAL is
0.5 %. For the testing data, there is a small advantage for
the ANN, with an error of again 0.5 %, compared to PCE
with an error of 0.6 %. No sensitivity analysis is available,
though, when using ANNSs.

WG2: ERL beam dynamics and instrumentation

ERL2019, Berlin, Germany JACoW Publishing
doi:10.18429/JACoW-ERL2019-WECOYBS04

FOMZ1MAF Training data
ANN . ANN
* PCe O=6 * PCe 0=6

...... Models are equal ” - surrogate model equal physics model
20 20 >

-~

FOMZ1MAF Test data

Surrogate &, (m-rad)
Surrogate &, (m-rad)

oo 05 20 25 oo oS 20 75

10 18 To 15
OPAL &, (m-rad) OPAL &, {(m-rad)

Figure 11: Comparison between PCE

CONCLUSION

This article concentrated on showing that the application
of statistical learning (PCE) or machine learning (ANN) in
commissioning has manifold advantages:

» The data necessary to perform PCE/ANN in itself is

a rich source of information, that can reveal helpful
dependencies.

 Uncertainty quantification, a side product of PCE, gives
a quick overview of dependencies of Qol on machine
parameters.

» Surrogate models are fast. They can be implemented
in the control room and can translate machine settings
online into expectation values for beam parameters.

* Surrogate models can speed up optimizations. When
approximating measured data or finding new working
points, genetic optimizers can be run much faster using
the surrogate model.

* The surrogate model prepared for commissioning on
theoretical data can be easily improved by including
measured date, when it is available.

» Ultimately, one could build a model exclusively on
measured data.

Both approaches will be applied to ease the commissioning
of bERLinPro. Different samples will be prepared to serve
different stages and questions during commissioning, where
the understanding of the gun plays the mayor role. Validation
tests have to be performed for each model. The effect of
increasing bunch charge is of central concern and will be
studied in detail. Fortunately, bERLinPro, designed to serve
accelerator physics rather than being a user facility is the
ideal testbed to study this new approach.
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