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Abstract
Energy Recovery Linacs promise superior beam quality—

smaller emittance and higher intensity. To reach these goals,
resonance frequency control of the superconducting RF cav-
ities has to be optimized.

To ensure stability of the resonance frequency the helium
pressure inside the cryomodules is measured and stabilized.
In order to improve the performance of the applied con-
troller, i. e. for optimizing its parameters, one has to obtain
the system’s transfer function by means of physical mod-
elling or system identification techniques. In this work the
latter approach is presented. Special constrictions are the
necessity to run the system in closed-loop mode and using
data obtained during normal machine operation.

The results of system identification procedures con-
ducted at the helium-pressure stabilizing system of the S-
DALINAC’s cryomodules (Institute for Nuclear Physics, TU
Darmstadt, Germany) and first results of a test with improved
control parameters are shown.

MOTIVATION
Due to their narrow bandwidth SC cavities are very sensi-

tive to changes in their geometry. A 1 mbar pressure change
of the helium in the cryomodules for example can cause
a change in the resonant frequency of 20 to 50 Hz. Reso-
nance frequency control with e. g. piezo tuners can be used
to counteract this [1]. Another approach can be eliminat-
ing the sources of some disturbances, like decoupling the
cryomodules from mechanically vibrating components such
as vacuum pumps. Nevertheless, if there is for example a
sudden heat intake, maybe due to turning on the RF power
delivery to the cavities (or vice versa, lesser heat intake if
one has to turn them off), this can cause more helium to
evaporate (or less, respectively) and thus resulting in fluctu-
ations of the helium pressure that have to be damped by the
controller by increasing (or decreasing) the pump’s speed.

Figure 1 shows a typical measurement of the helium pres-
sure when such a disturbance occurs. The system is operated
in closed-loop mode so that the controller damps the dis-
turbance to reach the steady state. At the S-DALINAC this
process can take up to three hours, as on can see in Fig.1.

Although this is a rather slow process it causes drifts that
have to be compensated by the piezo tuners. Since these
feedback loops rely on the measurement of the RF phase,
they can have problems detecting such slow changes and
sometimes manual corrections to the RF phase are applied
by the operators who recognize e. g. a drift in the beam
∗ Work supported by DFG: GRK 2128 “AccelencE”
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energy. To improve long-term stability of the beam quality
and to ease the operation of the machine, an improvement
of the helium pressure stabilizing controller was desired.

There have been some tests modifying the con-
troller’s parameters—it’s a standard PID controller with
𝑃 = 250, 𝐼 = 3 s, 𝐷 = 0 s :

𝑈 (𝑡) = 𝑃𝐸 (𝑡) + 1

𝐼

∫ 𝑡

0

𝐸 (𝑡 ′)d𝑡 ′ + 𝐷 d𝐸 (𝑡)
d𝑡

. (1)

Especially the D-component was slightly increased to speed
up the system, but no results were found in the tested param-
eter range. To ensure stable operation this range was chosen
very narrow.

With the model obtained from system identification an
improved set of control parameters was suggested and suc-
cessfully tested.

Figure 1: Helium pressure fluctuation in a cryomodule after
a disturbance.

This system identification was also intended to serve as a
prove of principle for closed-loop system identification pro-
cedures that are planned to be applied to other components
as well. To make this transfer more convenient a generalized
description of the system will be given in the next section
followed by an overview over different closed-loop system
identification techniques and a their advantages and disad-
vantages. Then, the results of such an identification process
applied to the helium pressure stabilizing system and simu-
lations with improved control parameters are shown. These
predictions have been tested and first measurement results
are presented.

BLOCK DIAGRAM AND SYSTEM
EQUATIONS

The block diagram of a closed-loop system is depicted in
Fig. 2. Note that for an open-loop system identification there
is no feedback of the system’s output 𝑦 and in many cases
the identification directly uses the system’s input 𝑢. Also
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for closed-loop system identification one can make use of
an exiting signal 𝑟1 that directly acts on the plant. In normal
operation this signal 𝑟1 typically is not present.

Measurements of 𝑢 and 𝑦 are mandatory, while exact
knowledge of 𝑟1 or 𝑟2 or knowledge of 𝐶 is not required in
general but can be necessary for some identification schemes.

Figure 2: Block diagram of a closed-loop system with a
controller 𝐶, the plant 𝐺0, reference signals 𝑟1 and 𝑟2 and
noise 𝑣.

The system’s output 𝑌 (𝑡) is assumed to be digi-
tally sampled with a constant sampling time 𝑇 with
𝑌𝑘 := 𝑌 (𝑘𝑇), 𝑘 = 0, 1, ... and hence the system is described
in its 𝑧-transform with 𝑧 being the forward shift operator,

𝑌𝑘
c s𝑦(𝑧) (2)

𝑌𝑘+1 c s𝑧 · 𝑦(𝑧). (3)

Following [2] the exciting signals are combined to

𝑟 = 𝑟1 + 𝐶 (𝑧)𝑟2. (4)

The noise 𝑣 is modelled as filtered white noise,

𝑣 = 𝐻0 (𝑧)𝑒, (5)

where 𝐻0 (𝑧) has to be stable and stably invertible. The
noise disturbance will be assumed to be uncorrelated with
the signals 𝑟1 and 𝑟2. The system’s sensitivity function is

𝑆0 = (1 + 𝐺0𝐶)−1 (6)

where the argument is omitted for better readability.
This results in the following system equation and feedback

law:

𝑦 = 𝑆0𝐺0𝑟 + 𝑆0𝐻0𝑒, (7)
𝑢 = 𝑆0𝑟 − 𝑆0𝐶𝐻0𝑒. (8)

CLOSED-LOOP SYSTEM
IDENTIFICATION

The aim of the identification process is to obtain a model
(an estimate) of the plant𝐺0 and possibly also the noise filter
𝐻0 or also the controller 𝐶. When one already knows the
controller 𝐶 knowledge of the set-point signal 𝑟1 and extra
input 𝑟2 brings no additional information if 𝑢 is measured [3]
and vice versa. In practice however, delimiters and other
nonlinearities can occur and thus the controller won’t have

the simple form one could assume if e. g. the PID parameters
are known. Thus even for seemingly simple controllers it
can be beneficial to identify them as well.

In this contribution the focus will be on parametric system
estimation. Since there is an important difference to the
open-loop case, it shall be mentioned that while in the open-
loop case a non-parametric (spectral) estimate �̂� (𝑒 𝑗𝜔) can
be obtained from the spectra of the input and output data,
�̂� (𝑒 𝑗𝜔) = Φ̂𝑦

Φ̂𝑢
, this is no longer valid when the loop is closed

and will result in a weighted average between𝐺0 and− 1
𝐶

[2].
To avoid this, one has to provide an external excitation via 𝑟
and use the cross-spectra to obtain an unbiased estimate via

�̂� (𝑒 𝑗𝜔) =
Φ̂𝑦𝑟

Φ̂𝑢𝑟

. (9)

In parametric spectrum estimation the closed-loop case is
rearranged in such a way that open-loop methods can be
applied. Different approaches are often grouped into the so-
called direct and indirect methods, but it can be shown [3]
that from the estimator’s point of view they differ only in
the parametrization of the noise model. Nevertheless this
distinction is useful to understand the advantages and restric-
tions that come with the different approaches.

In the following we will only consider rational transfer
functions of the form

𝐺 (𝑧) = 𝑏𝑛−1𝑧−1 + ... + 𝑏0𝑧−𝑛
1 + 𝑎𝑛−1𝑧−1 + ... + 𝑎0𝑧−𝑛

=
𝐴(𝑧−1)
𝐵(𝑧−1)

(10)

(𝐻 (𝑧) analog) with polynomials 𝐴(𝑧−1), 𝐵(𝑧−1), ..., with a
priori known order 𝑛 and without delay. The parameters
𝑎𝑖 , 𝑏𝑖 , ... are combined into a parameter vector \.

Direct Identification
The most simple solution is to “ignore” the fact that the

feedback path is closed and identify a transfer function from
𝑢 to 𝑦 by defining the equation error

𝜖 (\) := 𝑦 − 𝐺 (𝑧, \)𝑢 (11)

and minimizing
𝐽 = 𝜖T𝜖 (12)

to obtain \̂, which is a least squares problem. This method
generally works if the noise 𝑣 (present in 𝑦) is uncorrelated
with 𝑢. For closed-loop systems this is not the case and thus
in general a very high signal-to-noise ratio (SNR) at the plant
input 𝑢 is required to mitigate the bias. In the special ARX-
case, i. e. when the noise filter is given as𝐻 (𝑧) = 1

𝐴(𝑧−1) , then
𝐺 (𝑧, \̂) will be a bias-free and consistent estimator (a Python
package that implements system identification algorithms
for the ARX- and also the more general ARMAX-case is
SIPPY [4]).

To overcome this restriction one can use the prediction
error instead of the equation error,

𝜖 (\) := 𝐻−1 (𝑧, \) (𝑦 − 𝐺 (𝑧, \)𝑢) (13)
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and minimize
𝑉 = 𝜖T𝜖 (14)

to obtain \̂. This method results in estimates 𝐺 (𝑧, \̂) for
the plant and 𝐻 (𝑧, \̂) for the noise which will be bias-free
and consistent if the whole system 𝑆 := (𝐺0, 𝐻0) is present
in the chosen model set M := {(𝐺 (𝑧, \), 𝐻 (𝑧, \)), \ ∈ Θ}.
This means, a rich model set has to be chosen, especially
for modelling the noise and thus this method is not suitable
if one is interested in reduced-order (approximate) model
identification.

Note that the direct identification methods described
above do not require knowledge of the controller 𝐶 but also
they do not benefit from knowing 𝐶.

Indirect Identification
The general idea behind the indirect identification meth-

ods is to identify the closed-loop system’s transfer func-
tion 𝐺cl =

𝐺0

1+𝐺0𝐶
or the system’s sensitivity function

𝑆0 = 1
1+𝐺0𝐶

and to extract the plant’s transfer function from
these estimates. Whether 𝐺cl or 𝑆0 is to be identified, in ei-
ther case the identification makes use of the signal 𝑟 instead
of the plant’s input 𝑢 and thus benefits from the fact that 𝑟
and the noise 𝑣 are uncorrelated. Using e. g. the prediction
error method one can estimate 𝐺cl from

𝑦 = 𝐺cl (𝑧, \)𝑟 + 𝐻cl (𝑧, \)𝑒 (15)

and with knowledge of 𝐶 an estimate for 𝐺0 is obtained as

𝐺 (𝑧, \̂) = �̂�cl

𝐶 (1 − �̂�cl)
. (16)

Equation (16) typically results in a high-order model and
exact knowledge of 𝐶 is required. For lower-order models
special parametrizations of the estimated transfer functions
can be chosen to avoid the calculation of Eq. (16). One
possibility to do so is the coprime factor identification [2].

If one wants to ensure that the identified model will defi-
nitely be stabilized by the given controller 𝐶 one can chose
the dual Youla-Kučera parametrization [2].

To identify the system without knowledge of 𝐶 and for
precise control of the desired model order the two-stage
methods can be applied [2]. In this approach one rewrites the
system’s equation (7) and the control law Eq. (8) introducing
a noise-free input 𝑢𝑟 := 𝑆0𝑟 ending up with

𝑦 = 𝐺0𝑢𝑟 + 𝑆0𝑣, (17)
𝑢 = 𝑢𝑟 − 𝑆0𝐶𝑣, (18)
𝑢𝑟 = 𝑆0𝑟. (19)

The first step is then to identify the system’s sensitivity
function 𝑆0 from

𝑢 = 𝑆(𝑧, 𝛽)𝑟1 +𝑊 (𝑧, 𝛽)𝑒 (20)

(in the case where 𝑟2 is used instead of 𝑟1 the function 𝑆(𝑧, 𝛽)
estimates 𝐶𝑆0 and the result is the same [2]) applying open-
loop techniques like the prediction error method or simple

least squares with the equation error (since 𝑟1 and 𝑒 are
uncorrelated the estimator will be bias-free and consistent).
With 𝑆(𝑧, 𝛽) one can simulate the noise-free input �̂�𝑟 with
Eq. (19).

In the second step 𝐺0 can be estimated from Eq. (17)
again with e. g. the prediction error method with

𝜖 (\) = 𝐾−1 (𝑧, \) (𝑦 − 𝐺 (𝑧, \)�̂�𝑟 ) , (21)

benefitting from the fact that 𝑢𝑟 and noise 𝑣 in Eq. (17) are
uncorrelated. One finally obtains the estimates

�̂�0 = 𝐺 (𝑧, \̂), (22)

�̂�0 = 𝐾 (𝑧, \̂)𝑆−1 (𝑧, 𝛽). (23)

The estimators will be bias-free and consistent if 𝑆0 lies
within the chosen model set for 𝑆(𝑧, 𝛽), so a high-order
estimate should be used to find an unbiased estimate 𝑆0 [3].

The high-order estimate of 𝑆0 will not result in a high-
order estimate of �̂�0 because since there are no constraints
on 𝐺 (𝑧, \) in Eq. (21) the model order is fully under con-
trol [2].

Additionally, no knowledge of 𝐶 is required.

IDENTIFICATION OF THE HELIUM
PRESSURE STABILIZING SYSTEM

Based on the helium pressure fluctuations after an impulse-
shaped disturbance an indirect identification scheme based
on reconstructing �̂�0 from Eq. (16) was performed. To
avoid high-order estimates the system was set up as a PT2
system with one zero to allow for the jump that was present
in the data. The controller 𝐶 was modelled as standard PID
controller.

With these assumptions the transfer function of the plant
in the Laplace-domain (complex variable 𝑠 = 𝜎 + 𝑗𝜔) is

�̂�He (𝑠) =
3.988 · 10−5𝑠

𝑠2 − 9.034 · 10−3𝑠 + 2.901 · 10−6
. (24)

Simulation and Controller Improvement
Figure 3 shows a comparison of the measured data

(red curve) and the simulated response of the sys-
tem consisting of the controller 𝐶 with the parame-
ters 𝑃 = 250, 𝐼 = 3 s, 𝐷 = 0 s and �̂�He from Eq. (24)
in closed-loop operation (green curve) to an impulse-
shaped disturbance. Additionally Fig. 3 includes a pre-
diction of the system’s response to the same impulse-
shaped disturbance if a set of improved control parameters,
𝑃 = 300, 𝐼 = 3 s, 𝐷 = 1000 s, is applied (blue curve). Us-
ing the D-part of the controller significantly increases the
system’s response time allowing it to return to steady-state
in 20 % of the time it took before.

Since the D-part of the controller acts proportional to
the frequency it also amplifies high frequency noise. To
estimate the impact of the improved parameters Fig. 4 shows
a simulation of the system’s response to noisy input with the
estimated response with the old parameters in green and with
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Figure 3: Comparison of the measured response of the he-
lium pressure to an impulse-shaped disturbance (red), a sim-
ulation of the identified system to an accordingly modelled
disturbance (green) and the simulated response of this model
when improved control parameters are set (blue).

the new ones in blue. The red lines indicate that the peak
values stay in the same range for both options and only the
average noise power is higher. Note that the absolute value of
the amplitude is much higher than in normal operation, but
since the system is linear it can be scaled without distortion.

Figure 4: Simulation of consequences of the increased D-
value for the system’s reaction to noise. The red lines indi-
cate that the amplitude stays within the same range.

MEASUREMENT RESULTS
To benchmark the simulation results it was planned to ap-

ply the improved control parameters to the system just before
the maintenance shut-down in December 2018. Due to the
warm-up process being already in preparation the helium-
level inside the cryomodules was lower than during normal
operation and three pumps running at idle reduced the pres-
sure well below the set-point. To bring the system back to
the working point one pump was turned off at 07:39 a.m.,
see Fig. 5. This disturbance caused an oscillation as was
expected but since the controller still was set with the old
parameters this oscillation should have been damped. As
Fig. 5 shows, this wasn’t the case, probably due to the men-
tioned circumstances. Nevertheless we decided to apply
the improved parameters at 10:31 a.m. and with these new
parameters a significant reduction in the amplitude of the
oscillation was achieved.

So far, no further tests during normal operation were con-
ducted.

Figure 5: Measured helium pressure change when one of
three running pumps is turned off (07:39 a.m.) and when
the new control parameters are applied (10:31 a.m.). The
remaining oscillation is still under investigation but is sup-
posed to originate from the already very low Helium level
due to the running shut-down process.

SUMMARY AND OUTLOOK
In this work different methods for closed-loop system

identification have been summarized. They can be distin-
guished as direct and indirect methods, where direct methods
make use of the plants in- and output 𝑢 and 𝑦 while indirect
methods need an external reference signal 𝑟 and the plant’s
output 𝑦. The choice between these methods is depending
on knowledge of the controller 𝐶 and the demands on the
model orders of the plant and also the noise filter.

An indirect approach with assumed second order plant
transfer function was carried out for the helium pressure sta-
bilizing system of the S-DALINAC and simulations showed
possible improvements for the PID controller’s parameters.
First tests with those parameters conducted just before the
last maintenance shut-down gave promising results.

In the future, extended tests shall be carried out, including
the application of different reference signals to be able to
compare and benchmark the different approaches and to
justify the assumptions.

Furthermore, these closed-loop system identification
schemes can also be applied to more low-level RF com-
ponents with data taken during normal operation. Thus, no
beam time has to be omitted for testing and data generation.
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