JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for THCOZBS03: Magnetized Beam Generated from DC Gun for JLEIC Electron Cooler

TY  - UNPB
AU  - Benson, S.V.
AU  - Adderley, P.A.
AU  - Benesch, J.F.
AU  - Bullard, D.B.
AU  - Delayen, J.R.
AU  - Grames, J.M.
AU  - Guo, J.
AU  - Hannon, F.E.
AU  - Hansknecht, J.
AU  - Hernandez-Garcia, C.
AU  - Kazimi, R.
AU  - Krafft, G.A.
AU  - Mamun, M.A.
AU  - Poelker, M.
AU  - Suleiman, R.
AU  - Tiefenback, M.G.
AU  - Wang, Y.W.
AU  - Zhang, S.
ED  - Meseck, Atoosa
ED  - McAteer, Meghan
ED  - Schaa, Volker R.W.
ED  - V\xF6lker, Jens
TI  - Magnetized Beam Generated from DC Gun for JLEIC Electron Cooler
J2  - Proc. of ERL2019, Berlin, Germany, 15-20 September 2019
CY  - Berlin, Germany
T2  - ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs
T3  - 63
LA  - english
AB  - Bunched-beam electron cooling is a key feature of all proposed designs of the future electron-ion collider, and a requirement for achieving the specified collision luminosity of the order 1034 cm⁻²s^{−1}. For the Jefferson Lab Electron Ion Collider (JLEIC), fast cooling of ion beams will be accomplished via so-called ’magnetized electron cooling’, where the cooling process will occur inside a long solenoid field, which will be part of the collider ring and facilitated using a circulator ring and Energy Recovery Linac (ERL). In this contribution, we describe recent achievements that include the generation of picosecond-bunch magnetized beams at average currents up to 28 mA with exceptionally long photocathode lifetime, and independent demonstrations of magnetized beam with high bunch charge up to 700 pC at 10s of kHz repetition rates using a compact 300 kV DC high voltage photogun with an inverted insulator geometry and alkali-antimonide photocathodes. Magnetization characterization including beam rotation and drift emittance were also presented for various gun bias voltages and laser spot sizes at the photocathode using 532 nm lasers with DC and RF time structure. These accomplishments mark important steps toward demonstrating the feasibility of a technically challenging JLEIC cooler design using magnetized beams.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
ER  -