
1 ABSTRACT

The rf control system of the TESLA Test Facility regulates
the vector sum of multiple superconducting cavities which
are operated in pulsed mode at accelerating gradients ex-
ceeding 15 MV/m. In addition to the feed back control loop
which suppresses stochastic errors, feedforward [1] is ap-
plied to reduce repetitive perturbations induced by beam
loading and dynamic lorentz force detuning. In the case of
TESLA repetitive errors are dominating. The feedforward
algorithm first identifies the time varying state space mod-
el of the closed loop system by measurement of a step re-
sponse. Next the pulse to pulse average of the measured
perturbations is applied to the inverse state space model to
obtain the correct feedforward table. The feed forward ta-
bles can be updated continuously to follow slow changes
in the perturbation parameters. On-line system identifica-
tion is transparent to routine beam operation due to the
small step size used.

2 INTRODUCTION

The requirements for amplitude and phase stability of the
vector-sum of 16 cavities are driven by the maximum tol-
erable energy spread for the TESLA Test Facility. The goal
is an rms energy spread of . The require-
ments for gradient and phase stability are therefore of the
order of and  respectively [1].

The amplitude and phase errors to be controlled are of the
order of 5% for the amplitude and 20 degrees for the phase
a result of Lorentz force detuning and microphonics. These
errors must be suppressed by a factor of at least 40 which
implies that the loop gain must be adequate to meet this
goal. Fortunately, the dominant source of errors is repeti-
tive (Lorentz force and beam loading) and can be reduced
by use of feedforward significantly.

3 DESIGN OF THE TTF RF CONTROL
SYSTEM

The digital rf control system at the TTF [2] has been de-
signed for maximum flexibility of the control algorithm.
The main features are:

•  digital IQ detection of the cavity field of each individ-
ual cavity. The fields are sampled at a rate of 1 MHz.

•  calibration of the individual measured cavity field
vectors by multiplication with an appropriate rotation
matrix

•  calculation of the vector-sum and subtraction from a
(time varying) setpoint to form the error signal.

•  application of the feedback control algorithm which is
presently implemented as proportional controller in
form of a time varying gain matrix

•  a time varying feedforward is added to eliminate
repetitive disturbances

All time varying signals are implemented as tables consist-
ing of 2048 pairs of real (r) and imaginary (i) values cov-
ering a pulse length of 2048µs. The goal of the adaptive
feedforward is to determine the optimum feedforward ta-
ble which minimizes the residual amplitude and phase er-
ror and to continually update the feedforward tables to
track slowly varying repetitive perturbations.

4 SOURCES OF PERTURBATIONS

The major perturbations of the pulsed accelerating fields in
the superconducting cavities are induced by microphonics,
dynamic Lorentz force detuning, beamloading, and power
fluctuations of the klystron. While microphonics and pow-
er fluctuations of the klystron are of random nature and
cannot be predicted in advance of the rf pulse, the effects
of lorentz force detuning and beam loading can be mea-
sured before they influence the cavity field. While typical
microphonic noise amplitudes are of the order of±5 Hz,
the lorentz force detuning reaches±200 Hz at a gradient of
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Figure 1: Schematic block diagram of the closed loop system of the TTF RF control
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25 MV/m. Both errors have to be compared to the cavity
bandwidth of 200 Hz (HWHM). The steady state beam
loading at 8 mA beam current is equal to the accelerating
gradient. The klystron power and phase fluctuates as a
function of (slow) line voltage variations with a typical
magnitude of 1% for power and 4 degrees in phase.

5 SYSTEM IDENTIFICATION

5.1 RF SYSTEM MODEL

The closed loop system consists of the vector-modulator,
the klystron, the cavities, the feedback controller, and var-
ious delays which are dominated by computational delay
as shown in figure 1.

The dynamics of the closed loop system are dominated by
the low frequency poles of the rf cavity which can be de-
scribed by the state space equation:

wherevr, vi, Ibr, Ibi, Igr, Igi are the real and imaginary parts
of the cavity voltage, beam current, and generator current
respectively. The remaining parameters are the cavity de-
tuning∆ω, the cavity bandwidthω1/2, the cavity shunt im-
pedance R=(r/Q)*QL, and the rf frequencyωrf. The
Lorentz force will detune the cavity dynamically resulting
in a time varying detuning∆ω(t).

The closed loop model of the time discrete system with de-
lay can be obtained using standard techniques as described
in various textbooks on control theory [3]. It is given by
equation 2, where V describes the cavity vector-sum volt-
age, F is the feedforward signal, S the cavity voltage set-
point, N the number of cavities,∆Ts the sampling period,
K the feedback gain, ga,...,gd the gain of klystron and vec-
tor modulator, kdm=∆Td3/∆Ts, and kdg=(∆Td1+∆Td2)/∆Ts.
The indices r and i denote real and imaginary part of the
relevant quantity.

The parameters of the closed loop state space model de-
scribed by equation 2 can be determined from a step re-
sponse at the desired operating point. For this purpose a
step function is applied as feedforward signal. The system

response to the single step is measured and the model pa-
rameters are calculated. Based on the model it is now pos-
sible to calculate the change of feedforward table∆F which
is required to achieve a given state response∆V, see equa-
tion 3.

5.2 SYSTEM REPONSE MATRIX

Another approach to describe the closed loop system with
respect to feedforward input is the system response matrix
[3]. This approach employs a set of step functions instead
of the single step that can be used for system identification.
The result is a feedforward system-response matrix which
allows to identify a time varying system even if a parame-
terized model is not available. The inversion of the re-
sponse matrix allows calculation of the feedforwardδf
which is necessary to achieve a given state response∆V:

where:

The method is computationally more intensive than the
system identification with a single step described before.

6 PRINCIPLE OF ADAPTIVE
FEEDFORWARD

As mentioned before the feedforward system will elimi-
nate only repetitive errors. In practise however stochastic
errors will be superimposed and require averaging meth-
ods for sufficiently precise measurement of the predictable
perturbations. Repetitive perturbations as well as the plant
model may however vary slowly as function of time and
may require a continuous update of feedforward table and
model. It is therefore desirable to measure the step respons-
es continually to maintain a current system model. The step
size should be small to prevent excessive perturbations of
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the state but sufficiently large to allow for an acceptable
signal to noise ratio. A flow diagram of the adaptive
feedforward algorithm as implemented at the TTF is
shown in figure 2.

7  PERFORMANCE OF
THE ADAPTIVE FEEDFORWARD

The adaptive feedforward scheme for the digital rf con-
trol system at the TESLA Test Facility has been imple-
mented in a very early stage of the project. A
comparison of the residual amplitude and phase errors
without and with adaptive feedforward show a signifi-
cant improvement (approximately a factor of 10) in sys-
tem performance which is reflected in the low energy
spread of the beam. The rf field stability is considerably
better than required as can be seen in figure 3.

8 CONCLUSION

Initial tests have demonstrated that by application of the
adaptive feedforward control in addition to the feed
back control the required field stability is exceeded by a
substantial factor. The adaptive feedforward control
proved to be an effective way of compensating the re-
petitive part of the perturbations. The delay in the sys-
tem and its nonlinearity can be handled by the adaptive
feedforward via linearization at a chosen operating
point.
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Figure 2: Flow diagram of the adaptive feedforward

Figure 3: RF control system performance without

and with adaptive feedforward.
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