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Abstract

The rf control system for the TESLA Test Facility employs
a digital feedback system to provide flexibility in the choice
of feedback algorithms and extensive diagnostics for rf sys-
tem operation and exception handling. The control algo-
rithm makes use of the state space formalism where the
state describes the real and imaginary part of the cavity
voltage (vector of the accelerating field) and the cavity de-
tuning. The cavity detuning – which is time dependent due
to the dynamics of lorentz-force-detuning in a pulsed cav-
ity – can not be measured directly. Knowledge about the
time-varying cavity detuning and other rf system parame-
ters such as beam phase are derived by application of sys-
tem identification to the uncalibrated measured cavity field
and incident and reflected wave. In this process the calibra-
tions for incident and reflected wave are determined which
includes compensation for the finite directivity of the direc-
tional couplers.

1 INTRODUCTION

With the advent of reasonably priced high speed data con-
version devices and digital signal processors which com-
bine tremendous computing power and I/O capability, the
design of rf control circuits will assume a new direction.
The concept of digital control provides enormous flexibility
in the control algorithms, diagnostics, and exception han-
dling. The concept of system identification provides the
possibility to extract information about rf system relevant
parameters from measured data. These measurements can
be performed online and are transparent to linac operation.

The model of the cavity relating input power and beam
current to the time varying voltage and phase of the accel-
erating field is well understood. The parameters in the dif-
ferential equation governing the system dynamics can be
determined from the measured data. With the knowledge
of the system parameters it is possible to predict the time
varying cavity detuning, the phase of the accelerating field
relative to the beam, and the loaded quality factor. Based
on the assumption of continuity of the rf-waves at the input
coupler the amplitudes and phases of the incident and re-
flected waves can be calibrated. A combination of both, the
differential equation and the condition of continuity yield
the directivity of the directional couplers.

The question remains which parameterized model to
choose for a correct description of the non-linear dynamics
of the lorentz force detuning . With system identification
one can compare different types of models to find the best
description. Surprisingly a 1st order model of the mechan-
ical dynamics of the cavity are qualitatively as good as a
model of 2nd order. Better results can be achieved if the

derivative of the field amplitude is included in the differen-
tial equation, but the physics behind this equation are not
understood.

2 PRINCIPLE OF SYSTEM
IDENTIFICATION

System identification allows to compare different models
such as transfer functions or differential equations by fit-
ting the coefficients to match the measured data. Transfer
functions are suited for time invariant linear models. An
example is the ARX model where the transfer function is
a fraction of two polynomials,H(z) = B(z)=A(z). The
difference equation of the system is

yn+k = a0yn+ : : :+ ak�1yn+k�1+ b0un+ : : :+ blun+l;

wherea0; : : : ; ak, b0; : : : ; bl are the coefficients ofA(z)
and B(z). When describingyn+k as function of
yn; : : : ; yn+k�1; un; : : : ; un+l one can perform a regres-
sion to determine the coefficients ofA(z) andB(z). The
noise is considered to modify only the last valueyn+k. For
linear models there there exists a selection of models char-
acterized by the order ofA(z) andB(z) and in which way
the noise is handled. One can test different models until
the data is reproduced satisfactory. Of course this way of
investigation is empirical and does not necessarily lead to
a model in which the physics of the system is well under-
stood.
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Figure 1: The signals for System Identification

The other approach is based on a parameterized model
which is derived from knowledge about the physics of the
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system. This can be in the same format as the standard
models, but one can also choose the differential equation
as a description. For time dependent problems this may be
the best solution. The algorithm for numerical differentia-
tion of the raw data is critically important for the accuracy
to which the parameters in the differential equation can be
determined. At the TTF we fit through every data point
a 2nd order polynom to the data next to this point. It's
derivative is taken as the data's derivative at the specified
point. There is no need for the full regression calculation at
every point since most of the calculations are repeated for
each point and therefore can be taken over. Discontinuities
can be detected by comparison with adjacent polynomials.
With this information the differential equation can be cal-
culated – even for time varying systems if necessary.

3 MODEL FOR THE RF-CAVITY

Resonant modes in cavities can be described using resonant
LCR circuits. For superconducting cavities the differential
equation for the complex field envelope can be reduced to
a first order equation
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with complex amplitudeŝVacc andÎf . The beam currentIb
is real but has to be multiplied with a complex phase factor.
It is the Fourier component of the pulsed beam at!0 and
thereforeIb = 2Ib0, with Ib0 the DC current. The normal-
ized shunt impedance is

�
r
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�
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 for TESLA cavi-

ties, the bandwidth is!1=2 =
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2QL

with QL in the range of
2 � 106 : : : 3 � 106 for TTF.

Due to lorentz force detuning the cavity detuning is time
dependent4! =4!(t), which means that the differential
equation is time dependent. Written in polar coordinates
the complex differential equation splits up into two decou-
pled equations whose first depends on!1=2 and second de-
pends on4!. The first one is time independent and can be
used for calibration purposes. From the second equation
one can calculate the detuning of the cavity at every time
step of one microsecond at the TTF.

4 RESULTS

4.1 Cavity Phase

One of the most important properties of the rf field in the
cavities is their phase with respect to the beam. It is de-
sireable for the linac operation that there is the possibility
to measure the phase whatever operational mode is active.
In the cavity-equation the beam current is introduced as a
complex vector. OncêVacc andÎf are calibrated correctly
it is possible to extract b from the data.

Figure 2 shows histograms of some measurements of the
beam phase taken in the first module of the TTF-linac. The
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Figure 2: Measurements of the beam phase in the 8 cavities
of the first TTF-module.

measurements were taken during standard linac operation
with feedback and feedforward applied. It shows that de-
termination of the beam phase is possible with a� of about
3�. The measurements were taken whenV̂acc andÎf were
consistent within each other but had some arbitrary phase
offset. The right phase calibration can be achieved by cor-
recting all measured phases in such a way that the centroid
of the beam phase distributions become zero.

4.2 Time varying Cavity Detuning andQL
The TTF linac is operated in pulsed mode so that the cav-
ities are dynamically detuned during every rf pulse. For
optimization of the cavity tuning and as an input for sophis-
ticated control algorithms like a smith-predictor it is neces-
sary to know the time dependent detuning of the cavities.
Starting about50�s after beginning of the rf pulse where
the gradient exceeds about 1MV/m it is possible to deter-
mine the detuning of each cavity. The main noise sources
are the fluctuations of the numerical derivative and noise
on the forward power.

Several models have been compared to describe the de-
tuning curves. Reasonable results have been achieved with
differential equations of 1st and 2nd order takingjVaccj

2 as
an input and4! as output. The best reproduction of the
measured data could be accomplished with a model of first
order when includingdjVaccj2=dt as input.

4.3 Calibration of Directional Couplers

The quality of the data extracted from the system identifi-
cation strongly depends on the accuracy of the calibration
of the forward power signal. Due to the finite directivity
of the directional couplers there is always some crosstalk
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Figure 3: Time varying detuning of cavity D1 at 15 MV/m
including one standard deviation of the error. For reference
the field amplitude has been added to the plot.
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Figure 4: Detuning of cavity D4 at four different gradients.
A model of first order has been adapted to the data of the
strongest detuning. With this model the detuning has been
simulated for all four gradients.

between the signal of the forward power and the reflected
power. The reflected power signal can be eliminated from
the measured forward power by subtractingd̂r Îr from Îf

with d̂f such that̂If � 0 during the field decay. From

V̂acc = RL(ff Îf + frÎr)

one finds an amplitude and phase calibration for the inci-
dent and reflected wave. As long as the reflected power
is not corrected for the directivity this calibration will be
wrong. From the condition!1=2 = const one finds the cor-

rect calibration for̂If . The comparison of both calibrations
delivers the second correction factor for the directivity.

5 CONCLUSION

The methods of system identification have been applied to
the digital rf feedback system at the TESLA Test Facil-
ity. Knowing the cavity model - which can be described
as a time varying state space model - one can determine rf
system parameters such as beam phase, time varying cav-
ity detuning, phases of incident waves and many more by
the measurement of the uncalibrated cavity probe, incident
wave and refleced wave systems. The knowledge of these
parameters has been critically important during the com-
missioning of the rf system and will be used in the future
to automate most of the rf operation relevant procedures.
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