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Abstract

This is the first part of our two papers in which we present
applications of methods from wavelet analysis to polyno-
mial approximations for a number of acceleratorphysics
problems. In the general case we have the solution as a
multiresolution expansion in the base of compactly sup-
ported wavelet basis. We give extension of our previous
results to the case of periodic orbital particle motion in
storage rings. Then we consider more flexible variational
method which is based on biorthogonal wavelet approach.

1 INTRODUCTION

This is the first part of our two presentation in which we
consider applications of methods from wavelet analysis to
nonlinear acceleratorphysics problems. This is a contin-
uation of our results from [1], [2], which is based on ap-
proach of two of us from [3], [4] to investigation of nonlin-
ear problems – general, with additional structures (Hamil-
tonian, symplectic or quasicomplex), chaotic, quasiclas-
sical, quantum, which are considered in the framework
of local(nonlinear) Fourier analysis, or wavelet analysis.
Wavelet analysis is a relatively novel set of mathematical
methods, which gives us a possibility to work with well-
localized bases in functional spaces and with the general
type of operators (differential, integral, pseudodifferential)
in such bases.

In [3], [4] we considered application of multiresolution
representation to general nonlinear dynamical system with
polynomial type of nonlinearities. Starting with variational
formulation of initial dynamical problem we construct ex-
plicit representation for all dynamical variables in the base
of compactly supported (Daubechies) wavelets. Our solu-
tions are parametrized by solutions of a number of reduced
algebraical problems one from which is nonlinear with the
same degree of nonlinearity and the rest are the linear prob-
lems which correspond to particular method of calculation
of scalar products of functions from wavelet bases and their
derivatives. In this paper we consider further extension of
our previous results. In section 2 we consider modification
of our previous construction to the periodic case, in sec-
tion 3 we consider generalization of our approach from [1],

[2] to variational formulation in the biorthogonal bases of
compactly supported wavelets.

Our main example is calculation of orbital particle mo-
tion in storage rings. Starting from Hamiltonian which de-
scribed classical dynamics in storage rings [5]H(~r; ~P; t) =
cf�2+m2

0
c2g1=2+e� and using Serret-Frenet parametriza-

tion, truncation of power series expansion of square root
we arrive to the following approximated Hamiltonian for
particle motion in machine coordinates:
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Then we use series expansion of functionf(p�) and the
corresponding expansion of RHS of Hamiltonian equations
of motions. In the following we take into account only
an arbitrary polynomial ( in terms of dynamical variables)
expressions and neglecting all nonpolynomial types of ex-
pressions, i.e. we consider such approximations of RHS,
which are not more than polynomial functions in dynamical
variables and arbitrary functions of independent variables.

2 VARIATIONAL WAVELET APPROACH
FOR PERIODIC TRAJECTORIES

We start with extension of our approach [1], [2] to the case
of periodic trajectories. The equations of motion corre-
sponding to Hamiltonian (1) may be formulated as a par-
ticular case of the general system of ordinary differential
equationsdxi=dt = fi(xj ; t), (i; j = 1; :::; n), 0 � t � 1,
wherefi are not more than polynomial functions of dynam-
ical variablesxj and have arbitrary dependence of time.
According to our variational approach [3], [4] we have the
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solution in the following form

xi(t) = xi(0) +
X
k

�ki'k(t); (2)

where�ki are the roots of reduced algebraical systems of
equations with the same degree of nonlinearity and'k(t)
corresponds to useful type of wavelet bases (frames). It
should be noted that coefficients of reduced algebraical sys-
tem are the solutions of additional linear problem and also
depend on particular type of wavelet construction and type
of bases. This linear problem is our second reduced alge-
braical problem. Our construction is based on multireso-
lution approach. Because affine group of translation and
dilations is inside this approach our method resembles the
action of a microscope. We have contribution to final re-
sult from each scale of resolution from the whole infinite
scale of spaces. More exactly, the closed subspaceVj cor-
responds to level j of resolution, or to scale j. We con-
sider a sequence of successive approximation by subspaces
Vj : :::V2 � V1 � V0 � V�1 � V�2 � ::: satisfying

the following properties:
\
j2Z

Vj = 0,
[
j2Z

Vj = L2(R),

f(x) 2 Vj <=> f(2x) 2 Vj+1 There is a function' 2 V0
such thatf'0;k(x) = '(x� k)

k2Z
g forms a Riesz basis

for V0. We use compactly supported wavelet basis: or-
thonormal basis for functions inL2(R). As usually'(x)
is a scaling function, (x) is a wavelet function, where
'i(x) = '(x� i). Scaling relation that defines';  are

'(x) =
N�1P
k=0

ak'(2x� k) =
N�1P
k=0

ak'k(2x);

 (x) =
N�2P
k=�1

(�1)kak+1'(2x+ k).

Let bef : R �! C and the wavelet expansion is

f(x) =
P
`2Z

c`'`(x) +
1P
j=0

P
k2Z

cjk jk(x)

The indicesk; ` and j represent translation and scal-
ing, respectively'jl(x) = 2j=2'(2jx � `),  jk(x) =
2j=2 (2jx � k). The setf'j;kgk2Z forms a Riesz basis
for Vj . LetWj be the orthonormal complement ofVj with
respect toVj+1. Just asVj is spanned by dilation and trans-
lations of the scaling function, so areWj spanned by trans-
lations and dilation of the mother wavelet jk(x).
All expansions which we used are based on the fol-
lowing properties: f'jkgj�0;k2Z is an orthonormal
basis for L2(R), Vj+1 = Vj

L
Wj ; L2(R) =

V0

1M
j=0

Wj, f'0;k;  j;kgj�0;k2Z is an orthonormal basis

for L2(R), f'j;k;  `;k; 0 � j � J � `; k 2 Zg is an
orthonormal basis forL2(R). If in formulae (4)cjk = 0
for j � J , thenf(x) has an alternative expansion in terms
of dilated scaling functions onlyf(x) =

P
`2Z

cJ`'J`(x).

This is a finite wavelet expansion, it can be written solely
in terms of translated scaling functions. We use wavelet
 (x), which hask vanishing moments

R
xk (x)dx = 0,

or equivalentlyxk =
P
c`'`(x) for eachk, 0 � k �

K. Also we have the shortest possible support: scaling
functionDN (whereN is even integer) will have sup-
port [0; N � 1] andN=2 vanishing moments. There ex-
ists� > 0 such thatDN has�N continuous derivatives;
for smallN; � � 0:55. To solve our second associated
linear problem we need to evaluate derivatives off(x) in
terms of'(x). Let be'n` = dn'`(x)=dxn. We derive the
wavelet - Galerkin approximation of a differentiatedf(x)
asfd(x) =

P
` cl'

d
` (x) and values'd` (x) can be expand-

ed in terms of'(x) [6]: �d` (x) =
P
m

�m'm(x), �m =

1R
�1

'd` (x)'m(x)dx. The coefficients�m are 2-term con-

nection coefficients. In general we need to find

�d1d2:::dn
`1`2:::`n

=

1Z

�1

Y
'di`i (x)dx (3)

For quadratic (Riccati) case we need to evaluate two and
three connection coefficients

�d1d2
` =

Z 1

�1

'd1 (x)'d2` (x)dx; di � 0;

�d1d2d3 =

1Z

�1

'd1 (x)'d2` (x)'d3m (x)dx

Now we consider the same objects and procedure of their
calculations but in the base of periodic wavelet functions on
the interval [0,1] and corresponding expansion (2) inside
our variational approach [3], [4]. Periodization procedure
gives us

'̂j;k(x) �
X
`2Z

'j;k(x� `) (4)

 ̂j;k(x) =
X
`2Z

 j;k(x� `)

So, '̂;  ̂ are periodic functions on the interval [0,1]. Be-
cause'j;k = 'j;k0 if k = k0mod(2j), we may consider
only 0 � k � 2j and as consequence our multiresolution
has the form

[
j�0

V̂j = L2[0; 1] with V̂j = spanf'̂j;kg
2j�1
k=0

[7]. Integration by parts and periodicity gives useful rela-
tions between objects (3)(d = d1 + d2):

�d1;d2
k1;k2

= (�1)d1�0;d2+d1k1;k2
;�0;dk1;k2

= �0;d
0;k2�k1

� �d
k2�k1

So, any 2-tuple can be represent by�d
k. Then our sec-

ond additional linear problem is reduced to the eigenval-
ue problem forf�d

kg0�k�2j by creating a system of2j

homogeneous relations in�d
k and inhomogeneous equa-

tions. So, if we have dilation equation in the form'(x) =p
2
P

k2Z hk'(2x�k), then we have the following homo-

geneous relations�d
k = 2d

PN�1
m=0

PN�1
`=0 hmh`�d

`+2k�m,
or in such formA�d = 2d�d, where�d = f�d

kg0�k�2j .
Inhomogeneous equations are:

P
`M

d
` �

d
` = d!2�j=2,
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where objectsMd

`
(j`j � N � 2) can be computed by

recursive procedureMd

`
= 2�j(2d+1)=2 ~Md

`
, ~Mk

`
=<

xk; '0;` >=
P

k

j=0

�
k

j

�
nk�jM

j

0 , ~M `
0 = 1. So, we re-

duced our last problem to standard linear algebraical prob-
lem. Then we use the same methods as in [3], [4].
As a result we obtained for closed trajectories of orbital
dynamics described by Hamiltonian (1) the explicit time
solution (2) in the base of periodized wavelets (4).

3 VARIATIONAL APPROACH IN
BIORTHOGONAL WAVELET BASES

Now we consider further generalization of our variational
wavelet approach. In [3], [4] we consider different types of
variational principles which give us weak solutions of our
nonlinear problems. But because integrand of variational
functionals is represented by bilinear form (scalar product)
it seems more reasonable to consider wavelet constructions
which take into account all advantages of this structure.

As an example let us consider action functional for loops

in the phase spaceF (
) =

Z



pdq �

Z 1

0

H(t; 
(t))dt.

The critical points ofF are such loops
, which solve
the Hamiltonian equations associated with the Hamilto-
nian H and hence are periodic orbits. So,(M;!) is
symplectic manifolds,H : M ! R, H is Hamilto-
nian, XH is unique Hamiltonian vector field defined by
!(XH (x); �) = �dH(x)(�), � 2 TxM; x 2M , where
! is the symplectic structure. A T-periodic solutionx(t) of
the Hamiltonian equations_x = XH (x) onM is a solu-
tion, satisfying the boundary conditionsx(T ) = x(0); T >
0. Let us consider the loop space
 = C1(S1; R2n),
whereS1 = R=Z, of smooth loops inR2n. Let us define a
function� : 
! R by setting

�(x) =

Z 1

0

1

2
< �J _x; x > dt�

Z 1

0

H(x(t))dt; x 2 


The critical points of� are the periodic solutions of_x =
XH (x). Computing the derivative atx 2 
 in the direction
of y 2 
, we find

�0(x)(y) =
d

d�
�(x+ �y)j�=0 =

Z 1

0

< �J _x �5H(x); y > dt

Consequently,�0(x)(y) = 0 for all y 2 
 iff the loop x
satisfies the equation�J _x(t) � 5H(x(t)) = 0, i.e. x(t)
is a solution of the Hamiltonian equations, which also sat-
isfiesx(0) = x(1), i.e. periodic of period 1.

We started with two hierarchical sequences of approxi-
mations spaces [8]:: : :V�2 � V�1 � V0 � V1 � V2 : : :,
: : : eV�2 � eV�1 � eV0 � eV1 � eV2 : : :, and as usual-
ly, W0 is complement toV0 in V1, but now not neces-
sarily orthogonal complement. New orthogonality condi-
tions have now the following form:fW0 ? V0, W0 ? eV0,

Vj ? fWj, eVj ? Wj , translates of spanW0, trans-
lates of ~ spanfW0. Biorthogonality conditions are<
 jk; ~ j0k0 >=

R
1

�1
 jk(x) ~ j0k0(x)dx = �kk0�jj0, where

 jk(x) = 2j=2 (2jx�k). Functions'(x); ~'(x�k) form
dual pair:< '(x � k); ~'(x � `) >= �kl, < '(x � k),
~ (x� `) >= 0 for 8k, 8`. Functions'; ~' generate a mul-
tiresolutionanalysis.'(x�k), (x�k) are synthesis func-
tions, ~'(x� `), ~ (x� `) are analysis functions. Synthesis
functions are biorthogonal to analysis functions. Scaling
spaces are orthogonal to dual wavelet spaces. Two mul-
tiresolutions are intertwiningVj +Wj = Vj+1; eVj+fWj =eVj+1. These are direct sums but not orthogonal sums.

So, our representation for solution has now the form
f(t) =

P
j;k

~bjk jk(t), where synthesis wavelets are used

to synthesize the function. But~bjk come from inner prod-
ucts with analysis wavelets. Biorthogonality yields~b`m =R
f(t) ~ `m(t)dt. So, now we can introduce this more com-

plicated construction into our variational approach. We
have modification only on the level of computing coeffi-
cients of reduced nonlinear algebraical system. This new
construction is more flexible. Biorthogonal point of view
is more stable under the action of large class of operators
while orthogonal (one scale for multiresolution) is fragile,
all computations are much more simpler and we accelerate
the rate of convergence. In all type of Hamiltonian calcula-
tion, which is based on some bilinear structures (symplec-
tic or Poissonian structures, bilinear form of integrand in
variational integral) this framework leads to much success.
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