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Abstract [2] to variational formulation in the biorthogonal bases of
. i . . compactly supported wavelets.

Th|s.|s the first part of our two papers in Whlch we present Our main example is calculation of orbital particle mo-
apphcatlons. of ".‘Eth"ds from wavelet analysis to pplynot-ion in storage rings. Starting from Hamiltonian which de-
mial approximations for a number of acceleramryglcs scribed classical dynamics in storage ring<&F B 1) =
prob'lems. I'n the gengral case we have the solution asc?ﬂz+mgcz}1/2+e¢ and using Serret-Frenet p’are;metriza-
mourlttgde?/:/);l\igtl)erl E);zziasnSI\(/)vr:a mi\jgee;z?\iig:m %?%B?Ctxvsigﬁ;on, truncation of power series expansion of square root
b i v : . PreviolRe arrive to the following approximated Hamiltonian for
results to the case of periodic orbital particle motion in
storage rings. Then we consider more flexible variationdl

method which is based on biorthogonal wavelet approach.

article motion in machine coordinates:
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This is the first part of our two presentation in which we E

consider applications of methods from wavelet analysis to 2

nonlinear acceleratguhysics problems. This is a contin- N -zz+ = (23 =322 + (2)
uation of our results from [1], [2], which is based on ap- y

proach of two of us from [3], [4] to investigation of nonlin- 21

ear problems — general, with additional structures (Hamil- 1 9
tonian, symplectic or quasicomplex), chaotic, quasiclas- —5 5 —m ' COS [h A + go]
sical, quantum, which are considered in the framework 0

of local(nonlinear) Fourier analysis, or wavelet analysi . . .
( ) y y :Jhen we use series expansion of functif(p,) and the

Wavelet analysis is a relatively novel set of mathematic U rresponding expansion of RHS of Hamiltonian equations
methods, which gives us a possibility to work with well- b g exp . : d
ﬁ motions. In the following we take into account only

localized bases in functional spaces and with the gener%

type of operators (differential, integral, pseudodifferential n arb'tfary polynomial ('|n terms of dynamlp al variables)
in such bases xpressions and neglecting all nonpolynomial types of ex-

In 131 141w nsidered lication of multi luti pressions, i.e. we consider such approximations of RHS,
[3], [4] we considered application of multiresolu 10N\ hich are not more than polynomial functions in dynamical

represen.tanon to general no'n.I|near dynamu;al syg:tern W'U?;\riables and arbitrary functions of independent variable
polynomial type of nonlinearities. Starting with variational

formulation of initial dynamical problem we construct ex-
plicit representation for all dynamical variables in the bas@ VARIATIONAL WAVELET APPROACH

of compactly supported (Daubechies) wavelets. Our solu- FOR PERIODIC TRAJECTORIES
tions are parametrized by solutions of a number of reduced

algebraical problems one from which is nonlinear with th&Ve start with extension of our approach [1], [2] to the case
same degree of nonlinearity and the rest are the linear proti-- periodic trajectories. The equations of motion corre-
lems which correspond to particular method of calculatiosponding to Hamiltonian (1) may be formulated as a par-
of scalar products of functions from wavelet bases and thdicular case of the general system of ordinary differential
derivatives. In this paper we consider further extension aquationsiz; /dt = f;(z;,t), (1, = 1,...,n),0 <t <1,

our previous results. In section 2 we consider modificatiowheref; are not more than polynomial functions of dynam-
of our previous construction to the periodic case, in segeal variablesz; and have arbitrary dependence of time.
tion 3 we consider generalization of our approach from [1JAccording to our variational approach [3], [4] we have the
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solution in the following form K. Also we have the shortest possible support: scaling
function DN (where N is even integer) will have sup-
wi(t) = 2:i(0) + Y Afen(t), (2)  port[0, N — 1] and N/2 vanishing moments. There ex-
k istsA > 0 such thatDN hasAN continuous derivatives;

where\* are the roots of reduced algebraical systems P small N, A > 0.55. To solve our sgcoqd assoqated
inear problem we need to evaluate derivativesf of) in

equations with the same degree of nonlinearity an() tgrms ofip(z). Let bey} = d" ¢y (x)/dz". We derive the
. n = .

corresponds to useful type of wavelet bases (frames). avelet - Galerkin approximation of a differentiatgt)

should be noted that coefficients of reduced algebraical S))g-

d _ d d
tem are the solutions of additional linear problem and als85/ (#) = >, api(x) and valuesp; (x) can be expand-

H . d _ _
depend on particular type of wavelet construction and '[yp‘ned in terms ofp(x) [6]: ¢;(x) = ;/\msom(x), Am =
of bases. This linear problem is our second reduced alge® J .
braical problem. Our construction is based on multiresos #: ()#m (z)dz. The coefficients\,, are 2-term con-

lution approach. Because affine group of translation angkction coefficients. In general we need to find
dilations is inside this approach our method resembles the

action of a microscope. We have contribution to final re- o
sult from each scale of resolution from the whole infinite Affein = / H o) (x)d (3)
scale of spaces. More exactly, the closed subspacer- oo

responds to level j of resolution, or to scale j. We con- o
sider a sequence of successive approximation by subspat®§ quadratic (Riccati) case we need to evaluate two and
Vii Vo C Vi C Vo C Vo, C Voy C ... satisfying three connection coefficients

the following properties:( | V; = 0, 1 v = 12 R), e
g propertiesi ] V; = 0. Vs = L*(®) At = [t iz,
flz) € V; <=> f(2z) € V41 Thereisafunctiop € 1} o
such that{eg x(z) = ¢(x — k), .} forms a Riesz b.as'ls Adrdads  _ / o (2) 0% (x) 0 (2)da
for V4. We use compactly supported wavelet basis: or-

thonormal basis for functions ih?(R). As usuallyy(z)
is a scaling functiony)(x) is a wavelet function, where Now we consider the same objects and procedure of their

ei(z) ij(f — ). Scaling r?VIatjon that defings i are  calculations butin the base of periodic wavelet functions on
@)= 3 arp(2r —k) = 3 aper(22), the mtgrvgl [0,1] and corresponding expansion (2) inside
k=0 E=0 our variational approach [3], [4]. Periodization procedure
N=2 . gives us
P(x) = 30 (=1 arp1p(22 + k).
k=-—1
Letbef : R — C and the wavelet expansion is Gin(r) = D @ikle—1) (4)
e ez
f@) = % cope(@) + 3 3 ciuthin(®) ! i
| L€z J=0kEZ . Uin(e) = Y tiklz—0)
The indicesk,¢ and j represent translation and scal- ez

ing, respectivelyp;;(x) = 20/2p(2x — £), Yijx(x) =
20/2p(2 2 — k). The set{y; x}rez forms a Riesz basis So, ¢, ¢ are periodic functions on the interval [0,1]. Be-
for V;. Let W; be the orthonormal complement 6f with  causep; . = ¢; 5 if k = k'mod(27), we may consider
respect td/j 1. Justad/; is spanned by dilation and trans-only 0 < & < 2/ and as consequence our multiresolution
Iat@ons of thelscgling function, so arg; spanned by trans- hag thefornU Vi = L*[0, 1] with V; = Span{%k}z‘;l
lations and dilation of the mother wavekg}(x). >0
All expansions which we used are based on the fol7]. Integration by parts and periodicity gives useful rela-
lowing properties: {¢;r};>0,kez 1S an orthonormal tions between objects (3)¥ = d; + d2):
basis for L*(R), V;z1 = V;@WwW;, L*R) = s o odrd 04 o .
= , A = CDTATT A ke = Ak, = Mo,
VO@W]», {0k, ¥jk}j>0kez IS an orthonormal basis
j=0 So, any 2-tuple can be represent A§. Then our sec-
for L*(R), {@jr er;0 < j < J < (ke Z}isan ond additional linear problem is reduced to the eigenval-
orthonormal basis fof.?(R). If in formulae (4)c;x = 0 ye problem for{A¢},<,<»s by creating a system df’
for j > J, thenf(z) has an alternative expansion in termshomogeneous relations it and inhomogeneous equa-
of dilated scaling functions only(z) = > csipse(2).  tions. So, if we have dilation equation in the fogpe) =

LEZ .
This is a finite wavelet expansion, it can be written solel)>/§ 2kez hie(2r—k), then vaihavjevzfrze following homo-

in terms of translated scaling functions. We use waveld&eneous relations; = 2957 "~ 57,7 " hnheAf oy,
W (z), which hask vanishing momentg z*v(z)dz = 0, or in such formAX? = 29X%, whereA = {Af}o<r<oi.
or equivalentlyz® = 3" ¢ p,(x) for eachk, 0 < k < Inhomogeneous equations aré., MfA] = d1277/2,
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where objectsM (]| < N — 2) can be computed by V; L Wj, V; L W;, translates ofy spanWvy, trans-

recursive procedurd/y = 2—1(2d+1)/21\2£d, Mf =< lates of¢ spanW,. Biorthogonality conditions are
o >= 0o ()9nfiME, MY = 1. So, we re- Vik: Vi >= JZo Yim(@) i () de = Skwidyje, where
duced our last problém to standard linear algebraical prol (z) = 27/%4(27z — k). Functionsp(z), 3(x — k) form
lem. Then we use the same methods as in [3], [4]. dual pair: < ¢(z — k), p(z — £) >= o, < (2 — k),

As a result we obtained for closed trajectories of orbitad(x — ¢) >= 0 for Yk, V¢. Functionsp, ¢ generate a mul-
dynamics described by Hamiltonian (1) the explicit timgiresolutionanalysisp(x—k), ¢ (x—k) are synthesis func-

solution (2) in the base of periodized wavelets (4). tions,g(x — ¢), ¥ (x — £) are analysis functions. Synthesis
functions are biorthogonal to analysis functions. Scaling
3  VARIATIONAL APPROACH IN spaces are dmbgonal to dual wavelet spes. Two mul-

BIORTHOGONAL WAVELET BASES tiresolutions are intertwiningj; +W; = Vj 41, V; + W; =
V;41. These are direct sums but not orthogonal sums.

Now we consider further generalization of our variational So, our representation for solution has now the form
wavelet approach. In [3], [4] we consider different types off(¢) = > 1 bikjk(t), where synthesis wavelets are used

variational principles which give us weak solutions of oug, synthesize the function. Bﬁ;k come from inner prod-
nonlinear problems. But because integrand of variation Icts with analysis wavelets. Biorthogonality yields, =
functionals is represented by bilinear form (scalar product (t)l/;z (1)dt. So, now we can introduce this more com-
it seems more reasonable to consider wavelet constructi gcatednéonstructi,on into our variational approach. We
which take into account all advantages of this structure. h

. ion functional for | ave modification only on the level of computing coeffi-
As an example letus consider action functional for 00t of reduced nonlinear algebraical system. This new

1

in the phase spac€(y) = /pdq — / H(t,y(t))dt. construction is more flexible. Biorthogonal point of view

. , ¥ 0 ) is more stable under the action of large class of operators
The critical points of " are such loops;, which solve e orthogonal (one scale for multiresolution) is fragile,
the Hamiltonian equations associated with the Hamiltoy| computations are much more simpler and we accelerate
nian f and hence are periodic orbits. SQ)/,w) IS the rate of convergence. In all type of Hamiltonian calcula-
symplectic manifolds,/7 : M — R, H is Hamilto-  {on which is based on some bilinear structures (symplec-
nian, Xy is unique Hamiltonian vector field defined byyic or poissonian structures, bilinear form of integrand in

W(Xp (v),v) = —dH(2)(v),v € T M, @& M,where \aiational integral) this framework leads to muclesess.
w is the symplectic structure. A T-periodic solutio(t) of

the Hamiltonian equations = Xy (x) onM is a solu-
tion, satisfying the boundary condition$?’) = #(0), 7T > 4 REFERENCES
0. Let us consider the loop spaée = C°°(S', R?), [1] AN. Fedorova, M.G. Zeitlin, 'Nonlinear Dynamics of Ac-

whereS! = R/Z, of smooth loops in??". Let us define a celerator via Wavelet Approach’, AIP Conf. Proc., vol. 405,
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sics/9710035.
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We started with two hierarchical sequences of approXjg] a. cohen, I. Daubechies, J.C. Feauveau, ‘Biorthogonal Bases
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ly, Wy is complement tol, in V4, but now not neces-
sarily orthogonal complement. New orthogonality condi-
tions have now the following formtV, L V5, Wy L Vo,

932



