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Abstract

The synchrotron sideband spin resonances are shown to
arise from the kinematic effect of spin phase modulation
with resonance strengths proportional to that of the pri-
mary spin resonance. We develop a method to analyze
overlapping spin resonances and apply it to fit data re-
cently obtained from polarized beam experiments at the
IUCF Cooler Ring. The implication of our analyses is
that synchrotron sidebands can only be corrected by cor-
recting its principle resonance. Furthermore, the effect of
synchrotron sidebands in proton synchrotrons is to change
the resonance phase without affecting the magnitude of the
strength.

1 INTRODUCTION

In synchrotrons, strong quadrupole fields are needed to fo-
cus the beam. Those particles moving off-center vertically
in quadrupoles will experience horizontal fields, which can
perturb the spin vector away from the vertical axis. Using
the Thomas-BMT equation [1], the spin resonance strength
is given by the Fourier amplitude of the spin perturbing
fields in synchrotrons [2, 3], i.e.
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where� is the orbital bending angle,�Bx is the radial per-
turbing field,�Bk is the longitudinal perturbing field, and
B� is the magnetic rigidity of the beam. In synchrotrons,
there is little or no longitudinal field and the transverse
radial field arises mainly from dipole rolls and the verti-
cal displacement in quadrupoles. Neglecting the effect of
dipole rolls, the radial perturbing field is given by
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@Bz
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where HOM stands for higher order multipoles. Spin reso-
nance tunes are generally given by

K = n+ k�z + `�x +m�syn; (3)

wherek; `;m; n are integers.
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Defining a 2-component spinor	 with ~S = h	j~�j	i,
the Thomas-BMT equation can be casted into the spinor
equation:
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where� can be expanded in Fourier series:
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Here�
K

is the resonance strength given by Eq. (1).

2 SYNCHROTRON SIDEBAND
RESONANCES

We consider the spin equation of motion for a single pri-
mary spin resonance:
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whereK is the resonance tune and�
K

is the resonance
strength. For an off momentum particle withlinear syn-
chrotron motion, the spin tune is given byG
 = G
0(1 +
�2�p

p0
). Transforming the spinor wave function into the

spin precessing frame with
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the spin precessing phase for an off-momentum particle be-
comes
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In particular, we note that the spin precessing phase has
been greatly enhanced by the smallness of the synchrotron
tune. The effective spin phase modulation amplitude isg =
�2G
0
�syn

â.
Expanding the spin precessing phase in Fourier harmon-

ics, the effective resonance driving term in the spinor equa-
tion becomes
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If the conditionj�

K
Jm(g)j < �syn is satisfied, each syn-

chrotron sideband behaves as an isolated resonance with



resonance strength�
K
Jm(g), wherem = 0;�1;�2; � � �,

i.e. the off-momentumparticle experiences spin resonances
atall synchrotron sidebands.

The physics of synchrotron sidebands can be understood
as follows. The spin phase modulation due to a linear syn-
chrotron motion can generate many sidebands around the
spin tune. If one of the sidebands falls on the principle
resonance, the spin is strongly perturbed. Thus the reso-
nance strength of synchrotron sidebands is proportional to
the strength of the principle resonance. Because the syn-
chrotron tune is relatively small, the particle stays at the
spin resonance condition for a long time, and therefore the
effect of the spin resonance is particularly enhanced.

3 EFFECT OF OVERLAPPING
RESONANCES

We consider a simple model of overlapping resonances
with

� = �1e
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�iK2�; (10)

where�1; �2 andK1;K2 are resonance strengths and reso-
nance tunes respectively. Let� = K2�K1 be the spacing
of these two spin resonances. We can classify multiple res-
onances into three categories:

1. Isolated resonances withj�j � max(�1; �2),
2. Overlapping resonances withj�j � min(�1; �2),
3. Nearly overlapping resonances withj�j �

max(�1; �2).

The first case has been extensively studied in Ref. [2]. For
the second case with overlapping spin resonances, the ef-
fective spin resonance strength becomes the arithmetic sum
of all resonances [3]. Thus the effective resonance strength
for synchrotron sidebands of proton synchrotrons becomes
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This means that the synchrotron motion merely changes the
phase of the principle resonance strength without affecting
its magnitude. We now turn to the case of nearly overlap-
ping resonances.

In the nearly overlapping resonance regime with� �

max(�1; �2), the Froissart-Stora formula may not be appli-
cable. We will analyze the two resonance model of Eq. (10)
as follows.

Let us transform the spinor equation onto the resonance
precession frame ofK1, i.e.
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describes the precession of any arbitrary polarization vec-
tor around the spin closed orbitn̂1, which precesses around
the vertical axis with the tuneK1. The second term de-
scribes the perturbation due to the nearby resonanceK2. If
j�1 +�j � j�2j, then the resonanceK2 can be treated per-
turbatively. We, however, will discuss the situation when
�1 +� � 0 with j�j � max(�1; �2).

The transformation of the spinor into the spin precession
frame ofK1 can be accomplished with

~	K1 = e�
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If j�1j � j�j > j�1j, the spinor can similarly be trans-
formed into theK2 resonance frame with
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Including the effect of the second resonance atK2, the
surviving polarization is
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Thus the vertical polarization of nearly overlapping spin
resonances can be expressed as the product of the projec-
tion of each resonance, i.e.
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and the radial polarization is given by

Sr =
X
i

Y
j 6=i

�2j

�2j
�

�ij�ij

�2i
cos(Ki� + �i): (17)

The vertical and the horizontal polarization of the beam can
then be obtained byaveragingSz andSr over the particle
distribution of the beam.

As the polarized beam travels around the ring, its polar-
ization vector precesses about the vertical axis with a spin
phase advanceK�. Since� advances by2� every revo-
lution, the radial polarization observed at one location in
the ring will oscillate with a zero average if all resonance
tunesKi are not integers. On the other hand, if one of
the resonances is an imperfection resonance, whereKi is
an integer, the spin closed orbit is stationary and the radial
polarization may not be zero.

4 DATA ANALYSIS

Synchrotron sidebands around an imperfection resonance
have been observed in the spin dynamics experiments at the
IUCF Cooler Ring [7]. Figure 1 shows the measured verti-
cal and radial polarization vs the longitudinal field strength
of the compensating solenoids at the IUCF Cooler Ring [7].
Vertically polarized protons at 104.5 MeV with 77% polar-
ization were injected into the Cooler Ring and the radial
and the vertical components of the beam polarization were
measured as a function of the compensating solenoidal field



Figure 1: The vertical and radial polarization measured at
the IUCF Cooler Ring for 104.5 MeV polarized protons
is plotted as a function of the longitudinal transverse field
errorBL in T-m. When the spin tune was equal to the
synchrotron tune, beam depolarization was observed. The
solid line was obtained with a synchrotron amplitudeâ =

0:001.

at the cooling section. The vertical polarization was found
to be maximum atBkL = 0:0158 Tm, which corresponded
to a fully compensated solenoidal field for spin motion.

The particleG
 value for this experiment was 1.9925.
Because of the vertical orbit bump at the electron cool-
ing section, the spin precession tune was shifted upward
by about 0.0035 [7]. Thus the spin tune of the beam was
�s = 1:9960. In the presence of the solenoidal field,
the perturbed spin tuneQs for an otherwise perfect syn-
chrotron is given by

cos�Qs = cos[��s] cos
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and the spin closed orbit vector̂n1 = (n1x; n1s; n1z) is
given by
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where� is the orbital angle between the observation point
and the solenoid (� = 60� at the IUCF Cooler Ring),�
is the spin kick angle from the solenoid, i.e.� = (1 +

G)
�BkL

B�
; where�BkL is the integrated solenoidal field

error, andB� is the beam rigidity. A larger spin precession
angle� will cause a larger deviation of the perturbed spin
tuneQs from an integer and the spin closed orbit also tilts
further away from the vertical axis.

The solid line shown in Fig. 1 is the theoretical fit using
Eqs. (16) and (17) with a type-3 snake tune shift of +0.0035
and a synchrotron tune 0.0046 with synchrotron amplitude
â =

2�syn
j�jBf

� 0:001; wherej�j � 0:76 is the phase slip
factor andBf � 10 is the bunching factor. The resultingg
is about 0.1. We note that the radial polarization is slightly

shifted from the zero crossing point at a fully compensated
solenoidal field. In an earlier study [7], we found that the
regular imperfection resonance at�s = 2 with resonance
strength of the order of 0.0008 could give rise to a shift
and asymmetry in the radial polarization. The solid line
provides a good description of the synchrotron sidebands
with only the single parameter of synchrotron amplitudeâ.
Without the kinematic enhancement, the resonance width
would be too small to explain the data.

5 CONCLUSION

We have found that the spin synchrotron sideband reso-
nances arise from the kinematic spin phase modulation,
and that the strengths of these sidebands are proportional to
that of the primary resonance. In the overlapping resonance
regime, the spin resonances can be combined into a single
resonance with an effective strength, which depends on the
relative phase of each resonance. The effective spin reso-
nance strength, including all synchrotron sidebands in pro-
ton accelerators, is equal to its principle resonance strength
with a phase shift. The model for nearly overlapping spin
resonances has successfully been used to analyze polariza-
tion data taken at the IUCF Cooler Ring.
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