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Abstract

Athough the nonlinear detuning in HERA-p should be large
enough to cure all transversal instabilities at injection and
the first part of the ramp strong excitation are frequently
observed. Here it is shown, that for typical HERA sex-
tupole distributions at injection the action of incoherent
space charge tune shift must lead to a strong reduction of the
effectivity of Landau damping. So weak instabilities occur.

1 TRANSVERSAL INSTABILITIES IN
HERA – OBSERVATIONS

The operation of the HERA proton ring is affected by
transversal instabilities which appear between 40 and
150 GeV and cause beam blow up and even beam loss.

There is a clear dependence on single bunch current as
bunches with low charge densities (large emittance or low
current) are not affected, while bunches with small emit-
tances and high single bunch currents, loose stabilityand are
blown up, showing strong transversal dipole oscillations.
The observations related to this loss of stability hardly fit
into a coherent picture due to a lack of classical threshold
behaviour or long term reproducible energy or current de-
pendence.

At injection energy an initially stable bunch can be desta-
bilized by transversal scraping or longitudinal compressing
leading to growth rates of the dipole amplitude in the order
of a second. This indicates a very weak instability which
therefore could affect the proton beam only in the nearly
complete absence of Landau damping.

On the other hand there are no indications for a notable
reduction of Landau damping. The decoherence time is in
the order of milliseconds which proves a frequency spread
large enough to damp any instability at the time scale of a
second.

A large broad-band impedance as source of the instabil-
ity can also be excluded. A broad-band impedance would
lead to a notable shift of the coherent tune with beam cur-
rent. In HERA such a dependence of the coherent tune on
beam current could not be detected. The accuracy of tune
measurement determines an upper bound of the transversal
impedance WT

|WT | < 2MΩ/m . (1)

This value for the transversal impedance is consistent with a
longitudinal broad-band impedance of |WL| ≈ 1 Ω a value

also confirmed by longitudinalstability considerations or by
calculating the chamber impedance [1].

From typical decoherence times of some milliseconds (at
250 µA/bunch) we expect a transversal detuning δQ in the
range of

δQ = 5× 10−4 · · ·1× 10−3 . (2)

From this we expect a stable proton beam for broad-band
impedances below 13MΩ/m [1] – considerably higher then
the measured upper limit in (1).

A narrow band impedance as source of the instability
mechanism can be excluded, because up to 70 mA proton
current can be stored without exciting notable multibunch
modes.

To explain the loss of stability we first will show that the
decoherence time has to be interpreted with more care.

2 DECOHERENCE TIME AND
DETUNING

The effectivity of Landau-Damping relies on the amount of
nonlinear detuning present.

The essential source of detuning in HERA are the sex-
tupole components of the main dipole field (the persistent
current contribution)and the sextupole correction coils nec-
essary to adjust the global chromaticity.

The horizontal tune shift δQx is a sum of two parts ∆Qxx,
∆Qxz each one depending only on the horizontal or vertical
emittance. The same holds for the vertical tune shift δQz.
We define the respective detuning coefficients by

δQx =
∂Qx

∂εx
· εx +

∂Qx

∂εz
· εz = ∆Qxx + ∆Qxz

(3)

δQz =
∂Qz

∂εx
· εx +

∂Qz

∂εz
· εz = ∆Qzx + ∆Qzz .

The detuning in each plane depends on the betatron ampli-
tude of the other plane. As long as the forces acting on beam
are hamiltonian the cross-coefficients ∆Qxz and ∆Qzx co-
incide.

The coefficients can be calculated accurately from the
persistent fields (measured) and the sextupole corrector set-
tings using normal form analysis of the HERA one turn map
[2]. It turns out that their values strongly depend on the
distribution of the corrector strength around the ring. In
practice the sextupole currents are not distributed accord-
ing to the theoretic optimum, obtained by imposing the con-
dition of local compensation of chromaticity. Instead, due



to limitations of the control system, the sextupole circuits
are power unbalanced. In Table 1 we give detuning coeffi-
cients calculated from different sextupole corrector setting
used during the 95 run of HERA. The date of each set refers
to the date when the respective file was stored. Often we find
s situation where the main a terms (∂Qx/∂εx, ∂Qz/∂εz) are
large in comparison to the cross term ∂Qx/∂εz.

Table 1: The chromaticity and detuning coefficients calcu-
lated from the sextupole currents of some injection files dur-
ing the 95 HERA run.

File 5.7 24.7 11.9 29.11
∆Qxx × 106 −397 210 79 −140
∆Qxz × 106 435 93 −19 103
∆Qzz × 106 −485 −615 −417 −468

ξx 6.5 −6.0 1.0 1.6
ξz 6.6 4.0 −0.8 −1.5

3 DECOHERENCE TIME OF A ROUND
BEAM

The decoherence time is a measure of the detuning strength,
but its interpretation is not as unique as commonly sup-
posed.

We assume a stationary distribution of parabolic form in
both planes.

We emphasize that we have to consider initial distribu-
tion of finite size in phase space – any beam pipe has a finite
aperture. Infinite distributions (without cut-off) may cause
severe inconsistencies.

To simplify the notation we restrict to a round proton
beam with equal width σ in both lateral planes, and scale
each length in units of σ. After a horizontal kick at time
t = 0 the stationary distribution is displaced by a distance
∆ in phase space. One has to distinguish the distribution
which results with ∆ < 1) after a weak kick and with ∆ > 1
after a stronger kick. More important is the last case with its
resulting distribution (see Fig. 1).

ρ(r, s, θx, θz) =
2
π (1− r2 −∆2 + 2∆r cos θx) · 2

π (1− s2)

if θx ∈ [−θM , θM ] and r ∈ [rmin, rmax]

0 otherwise

(4)

The horizontal, vertical amplitudes are r and s and the
phases in their respective space are θx and θz. We defined
the maximal angel ΘM by

sin Θ +M =
1

∆

and the minimal and maximum amplitudes rmin and rmax

for a given phase θx.

rmin = ∆ cos θx − 1 + ∆2 sin θ2
x (5)

Figure 1: A horizontal kicked beam in phase space.

rmax = ∆ cos θx + 1−∆2 sin θ2
x . (6)

The decoherence of the initial dipole amplitude ∆ can be
calculated as function of time by performing an integration
of the initial distributionρ together with the transversal posit
ions Φ(t) of each particle [3].

D(t) =

∫ ∞
0

dr r

∫ 2π

0

dθx

2π

∫ ∞
0

ds s

∫ 2π

0

dθz

2π

×ρ(r, s, θx, θz)Φx(r, s, θx, θz, t) . (7)

According to their amplitudes the particles oscillate with
shifted tunes

Φx(t) = r cos{(Q0 + ∆Qxxr
2 + ∆Qxzs

2)t + θx} (8)

Q0 denotes the linear tune and t the time in units of revolu-
tion times.

With Eq. (4) and Eq. (8) inserted into (7) we get the dipole
moment as function of time (see [4]).

The kicked beam performs a rapid oscillationat the undis-
turbed tune. Its amplitude is modulated by a decoherence
envelope, which changes at a time scale proportional to the
inverse detuning frequency. To get information about this
frequency we therefore have to separate the envelope E(t)
from the rapid betatron oscillations. Evaluating the expres-
sion (7) it results thatE(t) can be decomposed into two fac-
tors, one depending only on ∆Qxxt and the other only on
∆Qxzt [4]

E(t) = f(∆Qxxt) · g(∆Qxzt) . (9)

If the cross term ∆Qxz is small compared to ∆Qxx the
larger detuning coefficient determines the decoherence time
because the decoherence envelope then coincides with
f(∆Qxxt). The cross coefficient ∆Qxz can become very
small or even zero – the decoherence time will not be af-
fected. Now we will show that the space charge tune shift
can destabilize the beam if one detuningcoefficient becomes
small.

4 STABILITY AND DETUNING

Generally speaking the dispersion integrals describe the col-
lective response of a beam on an excitation. The real part



is a measure of the non resonant response (in phase with
excitation), the imaginary part is a measure of the resonant
response (π/2 out of phase with excitation). The circulat-
ing beam together with its accompanying wakefields, acting
back on the motion of the beam, form a potential unstable
system. The inversed (complex) dispersion-integral deter-
mines directly the limits of the (complex) impedance which
is still tolerable at a given beam current.

We follow the notation of [3]. The imaginary part of the
dispersion-integral is denoted D̂ sin Ψ̂ and is given in case
of a parabolic distribution by

D̂ sin Ψ̂ = 4

∫ 1

0

dr r(1− r2)

∫ 1

0

ds s(1− s2)

(10)

×δ[Ω − (Q0 + ∆Qxxr
2 + ∆Qxzs

2)] .

The free parameter Ω corresponds to the frequency of the
excitation. Only when particle frequencies coincide with Ω
resonant excitation is possible, and we get a contribution to
the imaginary dispersion. Mathematically this is expressed
by the delta function. We introduce the scaled frequency f ,
the fractional detuning δ and variables x and y by

f =
Ω−Q0

∆Qxz
δ =

∆Qxx

∆Qxz
x = r2 y = s2 .

Performing the x-integration we get

D̂ sin Ψ̂ =

∫ B

A

dy(1− y)(1 − f + y/δ) . (11)

The limits of integrationA andB have to be chosen in such
a way, that to each value of y ∈ [A, B] the condition x −
f+y/δ = 0 has a solution within the x range [4]. This was
not consequently done in previous works.

With the imaginary dispersion integral we determine
destabilizing HERA impedance as function of f . In Fig. 2
we see the machine impedance that would be necessary to
destabilize a proton bunch of 280 µA (corresponding to
45 mA in 160 bunches) at the frequency f . We assume the
typical detuning coefficients ∆xz = 5 × 10−5 and ∆xx =
5 × 10−4. The destabilizing impedance is considerably
higher than the measured value of 2MΩ/m. But: the coher-
ent space charge is rather strong in HERA ∆Qsc ≈ −10−3.
Because the oscillating bunch is carrying its own fields the
individual particle frequencies inside the bunch are not af-
fected, but only the frequency of the oscillating bunch itself.
Collective dipole instabilities can only occur at collective
frequencies. These frequencies are shifted by an amount

finc = ∆Qsc/∆Qxz ≈ 20

in respect to the particle frequencies f .
The range of f where the destabilizing impedance is

strong (means where enough Landau damping is present)
does not coincide with the frequency range where the dipole
instability develops – it is shifted by the incoherent space
charge tune shift and Landau damping is lost. In Fig. 2 the
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Figure 2: The imaginary part of the destabilizing
impedances versus frequency. The intervals of the
single particle and dipole frequencies do not coincide.
This means: Landau damping is present, but not at the
frequency of the dipole oscillation.

relationship between coherent tune shift incoherent space
charge and the strength of Landau damping is sketched.

Any, even very weak, instability may then blow up the
dipole amplitude, leading to the observed rise times in the
order of seconds. The described effect of loss of Landau
damping can be cured by changing the sextupole currents
resulting in higher detuning coefficients (lowering the coef-
ficient finc). This is the empirical found method used fre-
quently now in HERA.
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