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Abstract

Athough the nonlinear detuningin HERA-p should belarge
enough to cure al transversal instabilities at injection and
the first part of the ramp strong excitation are frequently
observed. Here it is shown, that for typical HERA sex-
tupole distributions at injection the action of incoherent
space charge tune shift must |ead to astrong reduction of the
effectivity of Landau damping. So wesk instabilitiesoccur.

1 TRANSVERSAL INSTABILITIESIN
HERA —OBSERVATIONS

The operation of the HERA proton ring is affected by
transversa instabilities which appear between 40 and
150 GeV and cause beam blow up and even beam | oss.

There is a clear dependence on single bunch current as
bunches with low charge densities (large emittance or low
current) are not affected, while bunches with small emit-
tances and high singlebunch currents, loose stability and are
blown up, showing strong transversal dipole oscillations.
The observations related to this loss of stability hardly fit
into a coherent picture due to alack of classical threshold
behaviour or long term reproducible energy or current de-
pendence.

At injection energy aninitially stable bunch can be desta-
bilized by transversal scraping or longitudinal compressing
leading to growth rates of the dipole amplitudein the order
of asecond. Thisindicates avery weak instability which
therefore could affect the proton beam only in the nearly
compl ete absence of Landau damping.

On the other hand there are no indications for a notable
reduction of Landau damping. The decoherence timeisin
the order of milliseconds which proves afrequency spread
large enough to damp any instability at the time scale of a
second.

A large broad-band impedance as source of the instabil-
ity can also be excluded. A broad-band impedance would
lead to a notable shift of the coherent tune with beam cur-
rent. In HERA such a dependence of the coherent tune on
beam current could not be detected. The accuracy of tune
measurement determines an upper bound of the transversal
impedance W

[Wr| <2MQ/m. (1)

Thisvauefor thetransversal impedanceisconsistent with a
longitudinal broad-band impedance of |V, | =~ 1 avalue

also confirmed by longitudinal stability considerationsor by
calculating the chamber impedance [1].

From typical decoherence times of some milliseconds (at
250 pA/bunch) we expect atransversal detuning 6@ in the
range of

5Q=5x10"*--.1x107%. 2)

From this we expect a stable proton beam for broad-band
impedancesbelow 13 M2 /m[1] —considerably higher then
the measured upper limitin (1).

A narrow band impedance as source of the instability
mechanism can be excluded, because up to 70 mA proton
current can be stored without exciting notable multibunch
modes.

To explain the loss of stability we first will show that the
decoherence time has to be interpreted with more care.

2 DECOHERENCE TIME AND
DETUNING

The effectivity of Landau-Damping relies on the amount of
nonlinear detuning present.

The essential source of detuning in HERA are the sex-
tupole components of the main dipole field (the persistent
current contribution) and the sextupol e correction coilsnec-
essary to adjust the global chromaticity.

The horizontal tuneshift §Q isasum of two parts A Qxx,
AQx, each onedepending only on the horizontal or vertical
emittance. The same holds for the vertical tune shift Q.
We define the respective detuning coefficients by

5QX = 8QX c€x T+ 8QX c €z = AQXX + AQXZ
Oex Oe,
(©)
5Qz = 8QZ c€x + 8QZ c €z = AQZX + AC?zz .
Oex Oe,

The detuning in each plane depends on the betatron ampli-
tude of the other plane. Aslongastheforces acting on beam
are hamiltonian the cross-coefficients AQ,, and AQ, co-
incide.

The coefficients can be calculated accurately from the
persistent fiel ds (measured) and the sextupol e corrector set-
tingsusing normal form analysis of the HERA oneturn map
[2]. It turns out that their values strongly depend on the
distribution of the corrector strength around the ring. In
practice the sextupole currents are not distributed accord-
ing to the theoreti c optimum, obtai ned by imposing the con-
dition of local compensation of chromaticity. Instead, due



to limitations of the control system, the sextupole circuits
are power unbalanced. In Table 1 we give detuning coeffi-
cients calculated from different sextupol e corrector setting
used during the 95 run of HERA. The date of each set refers
to thedate when therespectivefilewas stored. Oftenwefind
ssituationwherethe main aterms (0Qy / O¢ex, 0Q,/J¢,) are
large in comparison to the cross term 9Q / de,.

Table 1: The chromaticity and detuning coefficients cal cu-
lated from the sextupol e currents of someinjectionfilesdur-
ing the 95 HERA run.

File 57 | 247 | 119 | 2011
AQxx x 10° | —397 | 210 | 79 | —140
AQsx, x 105 | 435| 93| —19| 103
AQ,, x 105 | —485 | —615 | —417 | —468

€x 65| —6.0| 10| 16

£, 66| 40| —08| —1.5

3 DECOHERENCE TIME OF A ROUND
BEAM

The decoherence timeisameasure of the detuning strength,
but its interpretation is not as unique as commonly sup-
posed.

We assume a stationary distribution of parabolic formin
both planes.

We emphasize that we have to consider initia distribu-
tion of finite size in phase space —any beam pipe has afinite
aperture. Infinite distributions (without cut-off) may cause
severe inconsistencies.

To simplify the notation we restrict to a round proton
beam with equal width ¢ in both lateral planes, and scale
each length in units of o. After a horizontal kick at time
t = 0 the stationary distribution is displaced by a distance
A in phase space. One has to distinguish the distribution
whichresultswith A < 1) after awesk kickandwithA > 1
after astronger kick. Moreimportantisthelast case withits
resulting distribution (see Fig. 1).

p('r, 8, Ox, az) =
2(1— 72— A% 4+ 2Arcosby) - 2(1 — %)

if 0, € [—GM, GM] and r€ ['rrnin, 'rrnax] (4)

0 otherwise
The horizontal, vertica amplitudes are » and s and the
phases in their respective space are 6, and 6,. We defined
themaximal angel ©,, by
. 1
sin® + M = A
and the minimal and maximum amplitudes r,;, and ryax
for agiven phase 6.

Tmin = Acosfy — 1+ A®sin 62 (5)
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Figure 1: A horizonta kicked beam in phase space.

Tmax = Acosby +1— A?sind? . (6)

The decoherence of theinitia dipoleamplitude A can be
calculated as function of time by performing an integration
of theinitial distribution p together withthetransversal posit
ions ®(t) of each particle[3].

o] 2m ax oo 2m az
D(t) = / drr/ d—/ dss/ d

xp(r, s, Ox, 0,)Px(r, s, O, 0,,t) . (7)

According to their amplitudes the particles oscillate with
shifted tunes

P (t) =7 cos{(Qo + AQxxr” + AQx, %)t + 05} (8)

Qo denotesthelinear tuneand ¢ thetime in unitsof revolu-
tion times.

With Eqg. (4) and Eq. (8) inserted into (7) we get the dipole
moment as function of time (see [4]).

Thekicked beam performsarapid oscillationat theundis-
turbed tune. Its amplitude is modulated by a decoherence
envel ope, which changes at atime scale proportional to the
inverse detuning frequency. To get information about this
frequency we therefore have to separate the envelope E(t)
from the rapid betatron oscillations. Evaluating the expres-
sion (7) it resultsthat E(t) can be decomposed into two fac-
tors, one depending only on AQx«t and the other only on
AQx,t [4]

E(t) = f(AQxxt) : g(Aszt) . 9)

If the cross term AQy, is smal compared to AQ.y the
larger detuning coefficient determinesthe decoherence time
because the decoherence envelope then coincides with
F(AQxxt). The cross coefficient AQ,, can become very
small or even zero — the decoherence time will not be af -
fected. Now we will show that the space charge tune shift
can destabilizethebeam if onedetuni ng coefficient becomes
small.

4 STABILITY AND DETUNING

Generally speaking thedispersionintegral sdescribethe col -
lective response of a beam on an excitation. The real part



is a measure of the non resonant response (in phase with
excitation), the imaginary part is ameasure of the resonant
response (/2 out of phase with excitation). The circul at-
ing beam together with itsaccompanying wakefiel ds, acting
back on the motion of the beam, form a potential unstable
system. The inversed (complex) dispersion-integral deter-
minesdirectly thelimitsof the (complex) impedance which
isdtill tolerable at a given beam current.

We follow the notation of [3]. Theimaginary part of the
dispersion-integral is denoted Dsin¥ andis givenin case
of aparabolic distribution by

1 1
Dsin¥ = 4/0 drr(l—rQ)/O ds s(1 — s%)
(10)
x8[Q = (Qo + AQuar” + AQ4.5%)] .

The free parameter Q2 corresponds to the frequency of the
excitation. Only when particle frequencies coincide with €2
resonant excitation is possible, and we get a contributionto
theimaginary dispersion. Mathematically thisis expressed
by the deltafunction. We introduce the scaled frequency f,
the fractional detuning § and variables x and y by

- Q_QO o AQXX 2 2
1=30. " 30. ° |

Performing the z-integration we get

o B
Dsin ¥ :/A dy(1—y)(1 - f+y/d).

(1)

Thelimitsof integration A and B have to be chosen in such
away, that to each value of y € [A, B] the condition z —
f+y/d = 0hasasolutionwithinthe z range[4]. Thiswas
not consequently done in previous works.

With the imaginary dispersion integral we determine
destabilizing HERA impedance as function of f. InFig. 2
we see the machine impedance that would be necessary to
destabilize a proton bunch of 280 pA (corresponding to
45 mA in 160 bunches) at the frequency f. We assume the
typical detuning coefficients A,, = 5 x 107® and A, =
5 x 10~%. The destabilizing impedance is considerably
higher than themeasured valueof 2 M) /m. But: thecoher-
ent space chargeisrather stronginHERA AQ,, ~ —1073.
Because the oscillating bunch is carrying its own fields the
individual particle frequenciesinside the bunch are not af-
fected, but only the frequency of the oscillating bunchitself.
Collective dipole instabilities can only occur at collective
frequencies. These frequencies are shifted by an amount

finc - AQsc/AQXZ ~ 20

in respect to the particle frequencies f.

The range of f where the destabilizing impedance is
strong (means where enough Landau damping is present)
does not coincidewith thefrequency rangewherethedipole
instability develops — it is shifted by the incoherent space
charge tune shift and Landau damping islost. In Fig. 2 the
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Figure 2: The imaginary part of the destabilizing

impedances versus frequency. The intervas of the
single particle and dipole frequencies do not coincide.
This means. Landau damping is present, but not at the
frequency of the dipole oscillation.

relationship between coherent tune shift incoherent space
charge and the strength of Landau damping is sketched.

Any, even very weak, instability may then blow up the
dipole amplitude, leading to the observed risetimes in the
order of seconds. The described effect of loss of Landau
damping can be cured by changing the sextupole currents
resulting in higher detuning coefficients (lowering the coef-
ficient finc). Thisisthe empirica found method used fre-
quently now in HERA.
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