
1   ABSTRACT
We present three-dimensional numerical results of self-am-
plified X-ray wiggler radiation from a relativistic electron
beam using Lienard-Wiechert forces to drive self-consis-
tently the motion of electrons. A major advantage of this
approach is that except for collective radiation reaction
forces, all three dimensional classical interaction forces be-
tween electrons, including velocity (i.e., space charge forc-
es) and acceleration forces, are included in the electron
motion. The exact three dimensional self-consistent motion
of a beam of electrons gives rise to exact three-dimensional
radiation fields which can be calculated with very few ap-
proximations. As an example of this approach we report
here results of three dimensional X-ray coherent wiggler
radiation calculations from a short relativistic electron
pulse.

2   INTRODUCTION
The usual technique applied to study the free-electron laser
amplification process entails solving a paraxial version of
the wave equation at one or more signal frequencies [1].
Although this approach has been quite successful in ex-
plaining most features of the free-electron laser (FEL) it
has limited usefulness when dealing with self amplified
stimulated emission of radiation (SASE) or when dealing
with radiation from short pulses for which many frequency
components must be included in the analysis.
As an alternative approach we propose using Lienard-
Wiechert fields, which are exact three-dimensional spatial
and temporal solutions of the wave equation for point
charges, to study the collective radiation fields generated
by beams of relativistic electrons interacting with undula-
tors, wigglers and electromagnetic waves. The calculations
are self-consistent because all Lienard-Wiechert field inter-
actions between electrons, including velocity field (i.e.
space charge) forces, acceleration field (i.e. radiation) forc-
es, and external electromagnetic field forces are taken into
account to calculate the motion of each electron in the
beam. The nature of these particular solutions allows us to
derive in a straightforward manner differential equations
governing the self-consistent motion of all electrons in the
beam and as a result we can explore exactly the three di-
mensional nature of their collective radiated fields. This ap-
proach becomes particularly useful in dealing with the FEL
start-up problem. Unlike the approach used by others, our
scheme requires no initial artificial electromagnetic seed to
start the numerical solution of the problem. Furthermore
because Lienard-Wiechert fields are time-domain solutions
of the wave equation, we can study non-periodic electron

beam systems. In particular we can deal satisfactorily with
three-dimensional effects of very long and very short elec-
tron bunches. A limited non-self-consistent approach was
used by us [2] to study the FEL stimulated emission pro-
cess. The major disadvantage in our approach is the re-
quirement imposed by the retardation condition on field
calculations. That is, the calculated fields must be related to
the motion of electrons at earlier (retarded) times. We have
reduced the complexity of this calculations in the ultra-rel-
ativistic region with the assumption that during an integra-
tion step the longitudinal velocity of each electron remains
constant. This basic approximation will be discussed in
more detail in section 4. 

3      BASIC EQUATIONS
In what follows we assume that the electron beam is mov-
ing through a circularly polarized static magnetic wiggler
characterized by a z-dependent vector potential,

 which is independent,

near the wiggler axis, of transverse coordinates (x,y). Its
amplitude Au and period 2π/ku are assumed constant. We

will use ku to define convenient dimensionless parameters
such as electron position, velocity, acceleration

respectively and time τ = kuct. In addition we use the di-

mensionless relativistic parameter γ to describe the elec-

tron’s normalized kinetic energy γ = (1-β2)-1/2. Since we
have assumed here that near the undulator axis Au is inde-
pendent of transverse coordinates (x,y), then the corre-
sponding electron’s transverse generalized momenta

is conserved. From this last relation an electron’s trans-
verse position, velocity and acceleration can be obtained
immediately in terms of its electron longitudinal position
χz. The time dependence of χz is obtained from its longitu-

dinal velocity βz

.

The time dependence of βz is in turn obtained from the in-
tegration of the electron’s equation of motion which is driv-

Au Au kuz Au kuz 0,sin,cos( )=

χ kur β τd
d

χ , α
τd

d β==,=

πx πy,( ) γmcβx qAu χzcos+ γmcβx qAu χzcos+,( )=

χz τ( ) χz 0( ) βz τd
0

τ
∫+=

SELF-CONSISTENT THREE-DIMENSIONAL SASE X-RAY
RADIATION VIA LIENARD-WIECHERT FIELDS 

Luis R. Elias, Center for Research in Education in Optics and Lasers (CREOL)
and Physics Department, University of Central Florida, Orlando FL, 32816



en by the Lorentz force generated by all other electrons.
Since only electric fields do work we choose to derive an
energy equation from which one can then calculate the lon-
gitudinal velocity

 .

The dot product between the resultant electric force exerted
by all other electrons with an electron’s velocity vector
yields a dimensionless energy equation of motion for the

ithelectron 

which is written in terms of the electric component of the
linear superposition of Lienard-Wiechert field generated
by the other electrons.  ρij = kuRij is the retarded normalized
electron-electron distance, the vector nij is the retarded unit

vector connecting electron j with electron i, sij = 1-Σnijβj,

and r0 is the classical electron radius. 

4   RETARDATION
All dynamical variables included between square brackets
in the energy equation must be evaluated at a time τij satis-
fying the dimensionless retardation condition

, which is in general a difficult equation to

solve because ρij depends on retarded time. The approxi-

mation that we make in our analysis is that since the longi-
tudinal velocity of highly relativistic electrons does not
change significantly during radiation in an undulator, even
when strong radiation signals are involved, electron’s lon-
gitudinal velocity remains constant during a numerical in-
tegration step. With this approximation the retarded
longitudinal position of each electron χzj(τij) can thus be
derived from its present position χzj(τ) using the relation

. Inte-

grating numerically this simplified retardation condition
with the energy equation yields the time dependence of

, which are respectively an elec-
tron’s position, velocity and acceleration.

5   RADIATION
The far-field angular and spectral distribution of radiation
can be obtained in a straight forward manner once the self-
consistent motion of each electron is found. For a multi-
electron system the amount of energy radiated per unit an-
gular frequency per unit solid angle in the direction of the
unit vector n(θ,φ) is given by the well known formula [3]
 

.

6   3DLW CODE
We have developed a three-dimensional PC code (3DLW)
that solves self-consistently for the motion of a three-di-
mensional pulsed beam of N electrons in a magnetic wig-
gler taking into account all classical inter-electron forces,
including Coulomb and radiation forces, with arbitrary 6N
initial conditions. The program plots input and output
phase space diagram, calculates the space charge spatial
spectrum, evaluates and makes 3D plots of the angular and
spectral distribution of radiated energy and integrates the
distribution to calculate total radiated energy. At this time
the largest number of electrons that are practical to run in a
PC simulation is twenty thousand. 

7   X-RAY SASE RADIATION
We present here three-dimensional results of Self Ampli-
fied Stimulated Emission (SASE) of wiggler x-ray radia-
tion that can be achieved with a high energy electron
accelerator such as a SLAC machine. The physical param-
eters of the radiator are listed in Table 1:.

The electron beam was prepared with a set of 6N initial

conditions using a

double precision random number generator. For example
Fig.1 describes the initial x-βx component of random phase

space for five thousand particles.

Similar initial distributions were generated for the y-βy and
z-γ phase space components. To achieve the desired current
level we assume that each particle represents the motion of
about 310 electrons. Fig.2 shows the output longitudinal
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Table 1: X-ray SASE parameters.

Electron Energy 7 GeV

Beam Current 2500 A

Pulse Length 0.1 fs

Wiggler Period 0.1 m

Wiggler Peak Field 0.15 T

# of Electrons 5000
Normalized beam emittance 30 π mm-mrad

Initial Energy Spread 0.01 %

Wiggler Length 10 m

χxi χyi χzi βxi βyi γi i, , , , , , 1= N{ , } ,
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Fig.1 Initial x-βx phase space of 5000 particles



phase space of the electron beam after moving through ten
meters along the wiggler. The most salient features of this
plot is the clear level of longitudinal electron beam bunch-
ing that has occurred. Since the electron pulse length is ap-
proximately 30 nm there are nearly 38 distinct optical
bunches in the pulse. A Fourier spatial analysis of the lon-
gitudinal charge distribution (see Fig.4) indicates that
strong bunching has occurred at the fundamental radiation
wavelength (0.8 nm) and less bunching at the first harmon-
ic (0.4 nm) or at any higher harmonics. 

Also, because of relativistic effects, there is less bunching
at the trailing edge of the pulse than at its leading edge. That
is, the radiation force is more intense along the forward di-
rection than along any other direction. In fact the amplitude

of the backward wave is at least a factor 2γ2 smaller than
that of the forward wave. Furthermore electrons located
near the leading edge of the pulse will experience a larger
radiation force from electrons behind it than those located
near the trailing edge of the pulse. In addition to an increase
energy spread from 0.01% to 0.2%, the mean kinetic ener-
gy of the electron beam was reduced by 0.015%.

Fig.2  Longitudinal phase space of 5000 particles.

A far field angular and spectral distribution (φ = 0) of radi-
ated energy is shown in Fig.3.

Fig.3 Angular and Spectral distribution of radiation in
joules per steradian.

 Instead of angular frequency we have chosen to plot the
distribution in terms of the detuning parameter ν. The an-
gular radiation frequency can be obtained from

where L is the undulator length. That is, the angular fre-
quency decreases with increasing angle of observation θ. 

Compared to the radiation distribution produced by inde-
pendently radiating electrons (synchrotron radiation), the
main effect of electron beam bunching has been to increase
radiated energy and to decrease the angular distribution
from θγ = 1 to γθ = 0.06 due to constructive interference ef-
fects, i.e., coherent radiation. The spectral distribution is as
narrow as that for a single electron (2ν = 5.2) because the
electron beam pulse length is shorter than the slippage
length of the wave. For a longer electron pulse the spectrum
will be narrower but the peak power will remain un-
changed. Consequently the final spectrum for a long elec-
tron pulse will be determined not by the number of periods
in the undulator but by the number of electron bunches in
the electron pulse. Integrating the angular and spectral dis-
tribution yields a peak radiated power of 320 kW in a 10 m
wiggler. Our results indicate that for a 20 m wiggler SASE
power saturates yielding a maxim power of 400 kW. The
actual power levels will be higher because we assumed that
electrons within a computation particle (310 electrons)
contribute randomly to the total power. If they had contrib-
uted in phase with the macro particle the power would be
310 times greater (90 MW and 125 MW respectively). By
no means has the problem been focused to optimize radia-
tion energy in the X-ray region. This is one possible radia-
tion configuration that may make possible to generate
intense tunable coherent X-rays. 
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Fig.4 Longitudinal charge density Fourier analysis


