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Abstract

Recirculating, energy–recovering linacs can be used as
driver accelerators for high power FELs. Instabilitieswhich
arise from fluctuations of the cavity fields are investigated.
Energy changes can cause beam loss on apertures, or, when
coupled toM56, phase oscillations. Both effects change the
beam induced voltage in the cavities and can lead to unsta-
ble variations of the accelerating field. An analytical model
which includes amplitude and phase feedback, has been de-
veloped to study the stability of the system for small per-
turbations from equilibrium. The interaction of the elec-
tron beam with the FEL is a major perturbation which af-
fects both the stability of the system and the development
of start–up and recovery scenarios. To simulate the sys-
tem’s response to such large parameter variations, a numer-
ical model of the beam–cavity interaction has been devel-
oped which includes low level rf feedback, phase oscilla-
tions and beam loss instabilities and the FEL interaction.
Agreement between the numerical model and the linear the-
ory has been demonstrated in the limit of small perturba-
tions. In addition, the model has been benchmarked against
experimental data obtained during CEBAF’s high current
operation. Numerical simulations have been performed for
the high power IR DEMO approved for construction at CE-
BAF.

1 LINEAR THEORY

The interaction of the beam with the cavity fields can be de-
scribed, to a very good approximation, by the followingfirst
order differential equation,

d~Vc
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+
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2QL

(1 � i tan	)~Vc =
!0RL

2QL

(~Ig � ~Ib) (1)

where !0 is the cavity resonant frequency,QL is the loaded
Q of the cavity andRL is the loaded shunt impedanceRL =

(R=Q)QL. The beam in the cavity is represented by a cur-
rent generator. In arriving at (1) we assume that the cavity
voltage, generator and beam current vary as ei!t, where !
is the rf frequency, and ~Vc, ~Ig and ~Ib are the corresponding
complex amplitudes (phasors) in the rotating frame of ref-
erence, varying slowly with time. In this equation Ib (ab-
sence of tilde denotes the magnitude of the corresponding
quantity) is equal to the average beam current (in the limit
of short bunches). Also 	 is the tuning angle defined by
tan	 = �2QL(!�!0)=!0. In steady–state the generator

power is given by

Pg =
(1 + �)

4�
I2gRL ;

where � is the cavity coupling coefficient, and can be cal-
culated from QL = Q0=(1 + �).

1.1 Open Loop Analysis

To carry out the analysis we assume that the accelerator
consists of an injector, and a superconducting rf linac with
a one–pass recirculation transport, which accelerates the
beam, decelerates it for energy recovery, and transports it
to a dump. Therefore, in this model, there are two beams in
the linac cavities at any time (one accelerating and one de-
celerating). The generalization to multi–pass recirculation
transport is straightforward [1], [2].

Two effects may trigger an unstable behavior of the sys-
tem: a) Beam current loss which may originate from energy
offset which shifts the beam centroid off its central trajec-
tory and leads to beam scraping on apertures. b) Phase shift
which may originate from an energy offset coupled to the fi-
nite compaction factor (M56) in the arc.

In the open loop analysis, we assume that the generator
current ~Ig is constant and is expressed in the polar form
~Ig = Ig0e

i	g0 . The cavity voltage is perturbed in ampli-
tude and phase, by v̂(t) and �̂(t) respectively,

~Vc = [Vc0 + v̂(t)]ei�̂(t) ;

where Vc0 is the steady–state cavity voltage. We measure
all phases with respect to the phase of the steady–state cav-
ity voltage. We assume that the accelerating beam remains
unperturbed and express it in polar form as

~I1 = I0e
i	1 ;

where 	1 is the beam phase. The FEL interaction how-
ever, which takes place downstream of the linac, greatly in-
creases the energy spread of the beam, which is then trans-
ported through an non–isochronous arc back to the linac for
energy recovery. Therefore the decelerating beam can, in
principle, be perturbed both in magnitude and phase,

~I2 = [I0 + î2(t)]e
i[	2 + �2(t)]

where
î2 = �bI0�1



�2 = �h�1

and �1 is the energy error at the end of pass 1. The coeffi-
cient h is proportional to the compaction factor of the arc,

h =
M56!

cE
:

Similarly, b can be expressed as

b = �
�x

LE

where �x is the horizontal dispersion of the arc, L is a loss
coefficient which characterizes the amount of beam loss,
and E is the beam energy.

Substituting the above equations into the cavity equation
(1), separating real and imaginary parts, performing the lin-
earization, and taking the Laplace transform of the equa-
tions, we obtain two algebraic equations MA = 0, where
M is a 2 � 2 matrix and A is the column vector with v̂(s)
and �̂(s) as components.

The determinant ofM is then set to zero and the two roots
of s are examined. The real parts of the roots will provide
the damping or growth rates of perturbations. The imagi-
nary parts of the roots will give the oscillation frequencies
relative to the driving rf frequency. If both roots have zero
or negative real parts, the system is stable; otherwise the
system is unstable. Taking this into account, the two roots
of s are

s� = �1+
I0RL

2
(hS+bC)�

s�
I0RL

2
(hS + bC)

�2
� �

where � = 2QL=!0 is the cavity’s time constant, and

� = I0RL(hC � bS) tan 	 + tan2	

is a coupling term arising from the non-zero tuning angle
	, and S and C are defined as S = sin (	1 �	2) and
C = cos (	1 �	2), where 	i ; i=1,2 are the steady–state
phases of the beam for passes 1,2 with respect to the cavity
voltage.

In the absence of coupling (� = 0) and (hS + bC) � 0

the system is stable for all values of the beam current. For
(hS + bC) > 0 however, the system becomes unstable for
currents above a threshold current Ith given by

Ith =
1

RL(hS + bC)
:

In this case the growth rate of the instability increases lin-
early with the beam current. Coupling, in this parameter
regime, can manifest itself as a frequency shift, and the sys-
tem remains unstable.

For (hS+bC) � 0, if the coupling term is strong enough
it can make the system unstable. The growth rate of this in-
stability however, is slow and approaches asymptotically a
constant value as the beam current increases.

1.2 Analysis with Feedback

In the presence of feedback, the generator current ~Ig is no
longer constant, but it assumes the form

~Ig = [Ig0 + �Ig(t)]e
i	g0 [1 + i�t(t)]

where �Ig(t) is the additional signal providing amplitude
feedback, and �t(t) is the additional signal providing phase
feedback [3]. The transfer function in the feedback path is
presently modeled as a low–pass filter with gainG and roll–
off frequency (2�T )�1. Therefore the Laplace transforms
of �Ig and �t are

�Ig(s)

Ig0
= �

G

1 + sT

v̂(s)

Vc0
;

and

�t(s) = �
G

1 + sT
�̂(s) ;

where v̂(s) and �̂(s) are the errors in the amplitude and
phase of the cavity field.

The analysis is similar to the open loop case, only
DetM=0 is now a quartic equation in s. The roots of
DetM=0 determine the stability of the system. In Section
3 we present solutions to this equation for CEBAF’s IR
DEMO parameters.

2 NUMERICAL SIMULATIONS

2.1 The Model

To simulate the system’s response to large parameter vari-
ations, we developed a model of the cavity and low level
controls using SIMULINK, a MATLAB program for sim-
ulating dynamic systems. The model includes a realis-
tic representation of the low level controls, modeled after
CEBAF’s rf control system. A detailed description of the
model can be found in [4]. The model has the capability of
correctly dealing with microphonic noise, transient effects
and klystron saturation. The FEL turn–on is presently mod-
eled as a linear change of the phase of the decelerating beam
by 1:40 occuring over 4 �secs. Two additional loops enable
the two types of instabilities, caused by beam loss and phase
oscillations.

2.2 Numerical Model Benchmarking

To benchmark the model, we compared the numerical re-
sults with the linear theory, as well as experimental data ob-
tained during CEBAF’s operation. In the limit of small per-
turbations, and amplitude and phase feedback with a single
low–pass filter in the feedback path, the numerical model
predicts the same gains and cross–over frequencies required
for stability, as the linear theory.

Furthermore the model has been used to predict the mag-
nitude of induced phase and amplitude transients when
250�sec beam pulses enter CEBAF’s superconducting cav-
ities. Both the shape and the magnitude of the transients as
predicted by the model, are in very good agreement with the
experimental data [4].



3 CEBAF’S IR DEMO: AN EXAMPLE

As a concrete example, we take the energy–recovering
driver accelerator design of the CEBAF IR DEMO [5]. The
accelerator consists of a 10 MeV injector, a superconduct-
ing rf linac with one–pass recirculation transport, which ac-
celerates the beam to 42 MeV, decelerates it for energy re-
covery to about 10 MeV and transports it to a dump. Lon-
gitudinal dynamics imposes off–crest operation for the two
beams (accelerating and decelerating), and that in turn im-
plies that the cavities must be operated off resonance to
minimize the required generator power. The optimum de-
tuning is approximately �25 Hz. When the FEL is turned
on, the phases of the two beams with respect to the rf crest
are 	1 = 12:50 and 	2 = �170:00. With 4 kW (unsat-
urated) klystrons and energy recovery, an optimum QL of
4� 106 allows operation at 8 MV/m in the presence of mi-
crophonics of 370 Hz p–p, for 5 mA of average current. For
an M56 = �0:15m, and assuming that 1 mm offset pro-
duces 10�3 losses, (hS + bC) > 0 and the system is un-
stable at I0 = 5 mA. The instability threshold is 1.6 mA and
the growth rate of the instability is 3.3 kHz at I0 = 5 mA.
The threshold current for the longitudinal instability alone
(b = 0) is greater than 5 mA, and for the beam loss insta-
bility alone (h = 0) is 1.4 mA and the growth rate at 5 mA
is 3 kHz. Therefore, when both instabilities are present the
threshold is dominated by the beam loss instability.

With both longitudinal and beam loss effects present, a
gain of 8 with roll–off frequency greater or equal to 520 Hz
is sufficient to bring the system to the stabilityboundary, for
small perturbations around the equilibrium. For the scrap-
ing instability alone, the required gain is also 8 and the
bandwidth is 500 Hz. In conclusion, for small perturbations
from equilibrium, modest gains at reasonable frequencies
(well within the range of CEBAF’s rf control system) are
required to stabilize the system.

To evaluate the system’s performance and stability under
large parameter variations, we performed simulations using
the numerical model. For microphonic noise typical for the
CEBAF accelerator, the system appears to be stable for a
range of operating conditions. Figure 1 displays simulation
results of the effect of the FEL turn–on on the cavity gra-
dient and phase. The FEL turn–on causes transients on the
cavity gradient of magnitude equal to 1:5�10�4, and tran-
sients on the cavity phase of 3 mrads. The low frequency
modulation of the cavity phase is due to microphonic noise
of amplitude 100 Hz p–p.

4 CONCLUSIONS

We have developed an analytical model to study instabil-
ities arising from cavity field fluctuations in recirculating
linacs, used as drivers for high power FELs. To study re-
alistic perturbations, we have also developed a numerical
model, using SIMULINK, that includes realistic low level
controls based on CEBAF’s rf control system, beam loss
and phase oscillations instability loops, a simplified model
of the FEL start–up, and capability of including micro-
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Figure 1: Cavity voltage and phase during FEL turn–on, in
the presence of microphonics.

phonic noise, cavity detuning and nonlinear effects arising
from klystron saturation and transient phenomena. The nu-
merical model has been benchmarked against the linear the-
ory as well as experimental data obtained during CEBAF’s
operation.

Numerical simulations have been performed with CE-
BAF’s high power IR DEMO parameters. For microphonic
noise of amplitude typical for the CEBAF accelerator, CE-
BAF’s rf control system appears adequate to ensure stable
and robust operation.

In the future we plan to develop a more complete start–up
scenario for the FEL and its interaction with the rf system.
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