ENERGY MEASUREMENT OF RELATIVISTIC ELECTRON BEAMS BY LASER COMPTON SCATTERING

Ian C. Hsu, Cha-Ching Chu, Chuan-Ing Yu, C. I. Chen, A. T. Lai, C. P. Wang, G. Y. Hsiung, P. K. Tseng, R. C. Chen, R. C. Hsu, Y. C. Liu Department of Nuclear Science, National Tsing Hua University and Synchrotron Radiation Research Center, Hsinchu, 30043, Taiwan.

ABSTRACT

Laser Compton scattering by relativistic electrons provides the energy information associated with electron beams in an accelerator. Determining the electron beam energy by this method depends primarily on the signal to noise (S/N) ratio associated with laser Compton scattering. In this study, we propose a method to enhance the S/N ratio by synchronous measurement with a high peak power pulsed CO₂ laser. In this method, the pulsed CO₂ laser provides the gate trigger signals, and the delay times of the triggers are optimized to obtain a maximum S/N ratio. In the storage ring of Taiwan Light Source, a γ -ray with the highest energy of 3.021MeV was backscattered after the 0.1172eV CO₂ laser photons colliding with the relativistic electrons. The S/N ratio is around 42.5 with the electron beam current being 19mA. Also, the measured electron beam energy is 1.3058GeV with relative uncertainty of 0.13%.

1. INTRODUCTION

Compton scattering of photons by free electrons is a simple quantum-electrodynamics process that is experimentally accessible. Since A. H. Compton¹ presented the first semi-quantum-mechanical treatment of such an interaction in 1922, many theoretical calculations of the characteristics of Compton scattering have been developed.

Two conventional approaches of measuring the electron beam energy are to measure the depolarization resonance and measure the magnetic field strength of the bending magnets. The depolarization resonance² method has the smallest relative energy uncertainty, e.g., 10^{-5} ; however, this method involves the complexity of measuring the electron beam polarization. The relative energy uncertainty of measuring the magnetic field strength is around the order of 0.5%.

In this study, we propose a method capable of providing an intermediate relative energy uncertainty with an easier measurement setup than that of the depolarization resonance method. Here the electron beam energy is measured by using laser Compton scattering. The method can be applied to any high energy $(\gamma \gg 1)$ electron beam. The experiment is performed on the electron beam in the storage ring of Taiwan Light Source (TLS) of Synchrotron Radiation Research Center (SRRC), Taiwan. The techniques include aligning and focusing for far infrared, synchronously measuring the

back-scattered photons, and reducing background radiation from Brems-strahlung.

To acquire a high γ -ray flux, a pulsed CO₂ laser with up to 2.67MW peak power is employed. Owing to the fact that the background radiation from Bremsstrahlung is extremely high (about 1200counts/sec at 20mA electron beam current) and the time duration for γ rays to be produced is quite short (less than 60ns per pulse), how to effectively subtract the background radiation is a relevant concern. In this study, we develop the method of synchronous measurement to resolve the above problem. The method proposed herein increases the signal to noise ratio from 1.2 to 42.5. Also, to enhance the collision rate, we develop a simulation program to optimize the optics system. The relative energy measurement error of this experiment is 0.13%.

The techniques of laser Compton scattering developed in this study will contribute toward the development of tunable X-ray sources and that of a future FEL (Free Electron Laser) facility in the booster of TLS. The tunable wavelengths enable the tunable Xray sources and the FEL to be highly effective tools in many applications such as medical image recording, nuclear physics research, and industry.

2. THEORY

Feenberg and Primakoff³ first proposed the kinematics formulas for Compton scattering on moving electrons in 1948. Suppose that the laser photon and the electron approach each other at some relative angle θ_1 . After back-scattering, the γ -ray emerges at a small angle θ_2 relative to the electron's direction. The γ -ray energy is then given by

$$E_{\gamma} = \frac{E_L(1 - \beta \cos \theta_1)}{(1 - \beta \cos \theta_2) + \frac{E_L(1 - \cos \chi)}{E_e}}$$
(1)

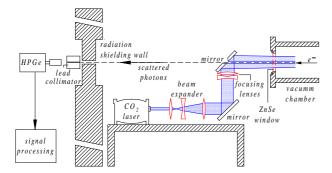
where E_{L} is the incident laser photon energy, E_{e} is the incident electron energy, $\chi = \theta_2 - \theta_1$, $\beta = v/c$ with v and c the velocities of the electron and light.

3. ERROR ESTIMATIONS

Using the error propagation method at the highest back-scattered photon energy E_s , one can derive the relative electron beam energy measuring error, ΔE_m , as⁴

$$\frac{\Delta E_m}{E_e} = \frac{1}{2} \sqrt{\left(\frac{\Delta E_s}{E_s}\right)^2 + \left(\frac{\Delta E_L}{E_L}\right)^2} \tag{2}$$

where $\Delta E_s E_s$ is the relative back-scattered photon energy measuring error,


$$\frac{\Delta E_s}{E_s} = \sqrt{\left(\frac{\Delta E_L}{E_L}\right)^2 + \left(\frac{2\Delta E_e}{E_e}\right)^2 + \left(\frac{FWHM/2.35}{E_s}\right)^2}$$
(3)

with $\Delta E_{t'}/E_{L}$ and $\Delta E_{e'}/E_{e}$ being the relative energy deviations of the laser photons and the electron beam, respectively. The last term, i.e., *FWHM/2.35*, represents the detector's energy resolution.

Suppose that the electron beam energy $E_e=1.3 GeV$, $\Delta E_e=0.86 MeV$, the *FWHM* at 3.021 MeV is 10 keV, and $\Delta E_{t'}E_{L}=0.001$, then the corresponding relative energy measuring error is about 0.24% for the back-scattered photons and about 0.12% in determining the electron beam energy.

4. EXPERIMENTAL DESIGN

The experiment was performed at the fourth straight section of the storage ring (R4A1 section) of Taiwan Light Source. The entire system consisted of the optical system, the detecting system, and the signal processing instruments. Fig. 1 demonstrates the entire system's schematic diagram. According to this figure, the laser photons pass through the optical system into the storage ring's straight section. After being scattered by relativistic electrons, the γ -rays pass through the lead collimator and are then detected by the HPGe detector. Later, the signal processing instruments acquire the back-scattered γ -rays(spectrum.

FIG. 1 Schematic diagram of the overall system: part of the vacuum chamber of the storage ring, optical system, detecting system, and signal processing system.

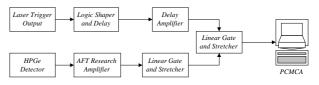
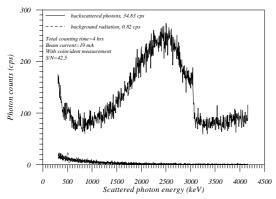
The optical system consists of a pulsed CO_2 laser, a beam expander, mirrors, and focusing lenses. After scattered by the laser photons, the electrons are bent by the bending magnets toward the storage ring's next section, while the laser photons are scattered backwards. The upper mirror is hollowed out for the back-scattered photons to pass through to the HPGe detector along the incident photons(path. The beam expander enlargers the laser beam so as to minimize the power loss due to the hole on the upper mirror. Moreover, the expanded laser beam is sequentially focused by the focusing lenses to increase the back-scattered photon yield. The detecting system consisted of a lead collimator and an HPGe detector. The collimator was a hollowed cylinder with an inner diameter of 3mm, an outer diameter of 100mm and was 100mm long with a distance of 669.5cm away from the end of the interaction region of the laser photons and the electron beams. After collimated, the back-scattered γ -rays were detected by the portable HPGe detector immediately behind the collimator.

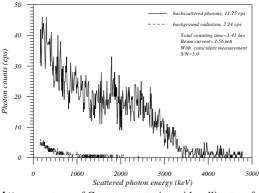
Considering that the highest energy of the backscattered photons was around 3000keV, we chose ²⁴Na the standard source in energy calibration of the HPGe detector since the two characteristic energies of ²⁴Na were 1368.4keV and 2753.6keV. Those energies contributed to a sum-peak energy of 4122keV which could be applied to the interpolation method in energy calibration.

5. SYNCHRONOUS MEASUREMENT

Using a pulsed CO₂ laser for its high peak power caused the scattered photons to be periodically produced with the same frequency as the CO₂ laser's repetition rate. The pulse length of CO₂ laser was 30ns, and taking into account the maximum interaction length (10m), the photons were produced within 60ns for each laser pulse. However, the CO₂ laser's repetition rate was at most 200Hz. This observation would suggest that the photons were produced within a time period less than 1.2×10^{-3} % of the total counting time. Besides, the continuous noise Bremsstrahlung (which was produced due to the interaction between electron beams and the residual gases as well as ions) was markedly higher than the back-scattered photons. Consequently, synchronously measuring the back-scattered photons became an extremely important task.

The synchronous measurement used a gate (which is triggered by the CO_2 laser's trigger output) to periodically allow the signals to pass from the detector to the counting system. Fig. 2 illustrates the experimental setup of synchronous measurement.


FIG. 2 Instruments associated with synchronous measurement.

6. EXPERIMENTAL RESULTS

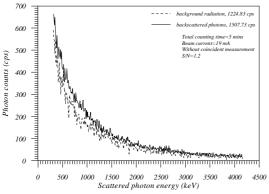

Figures 3 to 5 display the spectra of the backscattered γ -rays. Fig. 3 presents the spectrum of the Compton scattering with a collimator having an inner diameter of *3mm* which corresponded to a half opening angle of *0.2241mrad*. The background radiation's counting rate without the laser Compton scattering effect was around 0.82 counts/sec. After the laser photons collided with the electron beams, the counting rate raised to around 34.83 counts/sec, i.e., the S/N ratio was approximately 42.5.

FIG. 3 γ -ray spectrum of Compton scattering with collimator of *3mm* diameter under synchronous measurement. (electron beam current=*19mA*, counting time=*4hrs.*, and *S/N* ratio =*42.5.*)

FIG. 4 γ -ray spectrum of Compton scattering with collimator of *10mm* diameter under synchronous measurement. (electron beam current=*1.56mA*, counting time=*1.41hrs.*, and *S/N* ratio =*5.0.*)

FIG. 5 γ -ray spectrum of Compton scattering with collimator of *3mm* diameter and without synchronous measurement. (electron beam current=*19mA*, counting time=*5mins.*, and *S/N* ratio =*1.2.*)

Figures 4 and 5 demonstrate the importance of the collimator's size, and the synchronous measurement. Fig. 4 presents the spectrum of the Compton scattering with a collimator having an inner diameter of *10mm* which corresponded to a half opening angle of *0.818mrad*. The electron beam current was *1.56mA* and, in this case, the

S/N ratio was 5.0.

Figure 5 shows the spectrum obtained under the same conditions as in Fig. 3, but without synchronous measurement. In this case, the S/N ratio was only about 1.2. Comparing the two spectra reveals the significance of synchronous measurement. Apparently, the synchronous measurement could significantly enhance the S/N ratio.

From Fig. 3 We can estimate the back-scattered photon energy corresponding to the central energy of the electron beam at the middle point of the sharp edge. Through some data processing, this photon energy can be derived as 3054keV with a standard deviation of 2.6keV. According to Eq. (1), the electron beam's central energy can be expressed as

$$\gamma = \frac{\frac{4E_{L}E_{\gamma}}{m_{0}c^{2}} + \sqrt{(\frac{4E_{L}E_{\gamma}}{m_{0}c^{2}})^{2} + 16E_{L}E_{\gamma}}}{8E_{L}}$$
(4)

Offering $E_{\gamma}=3054keV$, we obtain $\gamma=2555.4$ corresponding to the electron energy 1.3058GeV, which is consistent with the results obtained from beam dynamics study⁵ by the beam dynamics group of SRRC. In addition, our measured relative error for the electron beam energy is 0.13%.

7. CONCLUSIONS

The synchronous measurement that contributes to a higher S/N ratio is the primary design feature of the laser Compton scattering experiment. This method employed the laser trigger outputs to trigger the gate. After the optimization process, a maximum S/N ratio was achieved at 42.5.

Since the back-scattered photon energies were strongly angular dependent, precisely aligning the collimator and the optical system was deemed essential. The highest back-scattered γ -ray energy could be estimated from the sharp edge of the spectrum as shown in Fig. 3. For our latest experiment, it was $3054keV\pm2.6keV$. According to the results, we can infer that the electron beam energy was $1.3058GeV \pm 0.0017GeV$.

REFERENCES

- ¹A. H. Compton, Bull. Nat. Res. Counc. (U. S. A.), **20**, 19 (1922); Phys. Rev. **21**, 483 (1923).
- ² L. Arnaudon, et al., Phys. Lett., **B284**, 431 (1992).
- ³ E. Feenberg and H. Primakoff, Phys. Rev., **73**, 459 (1948).
- ⁴ Chen-Lien Cho, Master thesis, National Tsing Hua University, Hsinchu, Taiwan, 1993.
- ⁵ J. C. Lee et al., in *Proceeding of the 1995 Particle Accelerator Conference* (Dallas, Texas, USA, 1995), pp. 804-806.