
NEW PROGRAMMING TECHNOLOGIES FOR BEAM DIAGNOSTICS

S. A. Kryukov, Institute for Nuclear Research, Moscow, Russia

Abstract

The MOON Lab, new software for solving various
problems of beam diagnostics has been developed at the
Moscow Meson Factory Linac. (“MOON” stands for
“Multitasking Object-Oriented Network”) This program
tool takes few advantages when compared with the
LabView®, its closest prototype. Several novelties of the
programming technology are introduced: multitasking
sharing of the apparatus via the driver-reside
semaphores, asynchronous process control via the user
interface, network-transparent control and more. All that
extremely simplifies developing and debugging
applications for beam diagnostics, data processing and
presentation through a network. The new program
technology has been tested on PC applications operating
with beam loss monitors, neutron counters and beam
current transformers.

1 INTRODUCTION
The control system of the Moscow Meson Factory

Linac is very old and it needs in essential upgrade. A
problem to be solved first is a problem of beam
diagnostics software. The Linac is of significant length,
so another problem to be solved is accessing and
viewing the diagnostic data everywhere along the Linac.

MOON Lab, projected to solve many of the
problems, is an environment for running measurement
and monitoring applications on a local area network or a
single computer. These MOON Lab-specific applications
can be developed with a easy-to-use interface library
supplied.

This software is presently available for Microsoft®

Windows™ 3.11 and all compatible versions for IBM
PCs. It can be easily ported to 32-bit Windows 95 and
Windows NT systems.

Strong Object-Oriented Programming (OOP)
approach is used for the MOON Lab design. The
interface library can be linked in using many
programming languages without OOP capabilities. It is
presently supplied as source code written in C, C++ and
Pascal; a FORTRAN interface is presently under
development. For the interface usable with non-OOP
languages every possible effort has been made to follow
the OOP style itself.

The system does not provide real-time possibilities.
The real-time properties of the software are important
for data acquisition in nuclear physics but are not
necessary for solving most problems for diagnostics. The

real-time problems must be solved separately on a lower
level of the control system.

2 WHY MOON LAB?
We have decided to develop a new laboratory

software system for the following reasons:
• Special program tools like LabView are too

expensive for our purposes; with MOON Lab we use
general-use compilers only; one license per
developer is required.

• MOON Lab applications can be written in virtually
any procedural programming language.

• Any type of measurement and data acquisition
hardware can be used, including non-standard ones
and those unfamiliar to brand-name software.

• All the code of the MOON Lab application can be
run in connection with the MOON Lab system under
a stepwise debugger. The CPU-level code of, for
example, low-level device driver can also be
debugged as a part of an entire application.

3 PROGRAM ARCHITECTURE
To run a MOON Lab application it is necessary to

load it via a special program, referred to below as the
MOON Lab Shell. Application to be run under the Shell
is referred to as the User Process. The User Process is
written by user with use of the interface library, referred
to as the MOON Lab API (Application Program
Interface).

In present version of the software the executable file
of the User Process is made as a Windows DLL
(Dynamic Link Library) running as part of the Shell
task. Multiple User Processes can be run concurrently on
the same computer, each one as a part of a separate
instance of the same MOON Lab Shell.

The MOON Lab Shell works as a GUI (Graphical
User Interface) server for the User Process. It provides a
flexible program interface to advanced event-oriented 2-
dimensional graphics. 3-dimensional graphics is reserved
by the MOON Lab API, but not implemented (see
below).

The MOON Lab Shell provides two threads of
execution: one for user interface and another one for
sequential code of process itself. Special attention has
been paid for implementation of the multi-threading
semantics for the non-preemptive Windows 3.11.

MOON Lab introduces a few novelties of
programming technology. Some of them are mentioned
below.

3.1 Asynchronous process control

Traditionally, parameter input is a difficult problem
of practical programming, especially in the field of
computer-guided experiments. In research experiments it
is difficult to decide which data should be changeable
during run-time. The event-oriented approach does not
solve this problem completely, because many
experiments have a complex but strict sequential
scenario and must be treated as “statement-driven” or
“code-driven”.

MOON Lab introduces a special technique of
registering of the process parameters. Parameters to be
modified during run-time are registered by the User
Process and stored by the Shell in a special user-
accessible list. Each parameter corresponds to a variable
of the programming language used. Integer, floating-
point and enumerated data types are supported.

For every parameter registered its name and
comment are specified. For each numeric parameter a
range of valid values is also specified.

The fact of registering does not affect the User
Process behavior until the user tries to modify a
parameter. After he clicks an item on the list of
parameters, the proper parameter editor (depending of
the parameter type) is used to modify the parameter
selected. After successful modification (in particular, if
the value entered is within the parameter range) the User
Process continues execution using new value of the
parameter.

We tested this technique for both beam diagnostic
tasks and numerical simulation problems and proved its
advantages in comparison with the traditional approach.

For special purposes the User Process can
synchronize its execution with the input of parameters
using a call to the MOON Lab API to pause execution
and possibly to send a text message to user. In this case
the user can continue execution of the User Process via a
menu or a toolbar of the Shell.

The user’s decision to start, pause, continue or close
a process is a special aspect of the asynchronous process
control. The user can do this at any time via the Shell.
For the proper “post-mortal” action after the
asynchronous closure of a process some sort of
“destructor” is present in the code of the User Process.

3.2 Event-oriented features of process

From the above discussion one can understand that
the idea of the User Processes is to couple a “code-
driven” scenario of an experiment with the event-driven
structure of the MOON Lab Shell.

Some event-oriented features of the User Processes
are also available and very useful. To use these features
the programmer of a process has to supply callback
procedures to be called asynchronously relative to the
User Process.

There are few points where the callback can be used.
1) A callback procedure can be specified for any

registered parameter (see above). It is called each time
parameter is modified, if its new value differs from
previous. For example, if graphical data is updated in an
operational loop from time to time, it also might be
useful to update it immediately after modification of
some parameters.

2) During run-time a set of push-buttons can be
created. A user-defined callback procedure is called
immediately after the user presses or clicks a push-
button. Its behavior should depend on a push-button
identifier.

3) A special case of the callback is the process
destructor performing some “post-mortal” actions (see
above). The destructor must always be present in the
code of the User Process.

3.3 Exception handling

MOON Lab enables the User Process to use
structured exception handling, similar to that of CLU
[1], Ada® [2] and Ada-95 [3] programming languages.
The C++ try-throw-catch feature, introduced by the draft
ANSI C++ standard, gives a more flexible structure for
exceptions [4].

One problem of exceptions for MOON Lab is that
many languages do not have this feature. Another
problem is that exception handling is not compatible at
the level of executable files. That means that if the User
Process raises an exception and does not handle it, it
cannot be handled properly within the MOON Lab Shell.
This is because the User Process is a separate executable
(possibly written in another language than the Shell).

This problem has been solved by implementing the
fully functional exception mechanism with the use of
language-independent low-level programming.

The author’s contribution is a clear syntax put
forward for the User Process code of an exception
handler. It allows the implementation of the non-
procedural exception semantics via appropriate calls to
the MOON Lab API, accessible with most procedural
languages.

3.4 Driver-reside semaphore

We use the MOON Lab system with CAMAC
hardware, but present discussion is not specific to
CAMAC and is applicable to any other interface to
physical measurement apparatus.

Some of the tasks for beam diagnostics are very
simple and occupy a small part of a standard CAMAC
crate. So we use a single crate for several independent
tasks for beam monitoring. For example, we need to
visualize a set of beam loss monitors, neutron counters

® Ada is a registered trademark of the U. S. Government,

Ada Joint Program Office

and current transformers. Several ADCs or counters
occupy some of crate space left by another independent
installation, interfacing via the same computer.

Each multitasking technology is faced with the
problem of shared resources. The typical one is a crate,
shared by few tasks. The problem is that the internal
state of the crate and its controller, modified by one task,
should be taken into account by each other. From the
other hand, a consistent multitasking technology must
isolate independent tasks as possible.

A key to solution of the problem is based on Dijkstra
semaphores [5]. The semaphore takes no task-specific
information, but merely sets up a protected fragment of a
code by opening (P) and closing (V). The protected
fragment sandwiched between P and V is sure to be run
by only one task at a time. Task switching is possible
within the fragment, but other tasks are delayed at the
call to P until first one calls V. The protected fragment is
used to access shared resources.

Since the crate controller under consideration is a
shared resource, the MOON Lab handles it via the
special interface driver, designed to resolve concurrent
calls via the single driver-reside semaphore. It turns out
that it is not necessary to track out of the state of the
crate or its controller, if every task follows proper
semaphore usage.

3.5 Networking

In the present version all the network capabilities
have to be linked in the User Process code. MOON Lab
only supports a definite style of the inter-task
communications via the network. This style is supported
by an additional network library, a special command line
parameter of the MOON Lab Shell and a respective
interface parameter of the MOON Lab API.

According to this style, each User Process performing
measurements can be accompanied by its counterpart
anywhere on the network. It is referred to as the remote
process. All the interactions between the user and the
User Process via the correspondent instance of the
MOON Lab Shell are doubled with the remote process.

4 FURTHER DEVELOPMENT

4.1 New Windows versions

New MOON Lab versions for Windows and
Windows NT are presently under development. Most
important improvements are the following:
• Components for 3-dimensional graphics have been

developed. These will be used for complete
implementation of the MOON Lab API.

• A new model of interaction between the User Process
and the MOON Lab Shell has been developed. The
User Process is to be developed as a separate task.
This significantly improves system performance.

• A universal network-transparent message dispatcher
is being presently developed.

4.2 UNIX edition

A new project has been started. The goal is to make a
MOON Lab edition for the UNIX X Window system.
The User Process code should be made portable at the
level of source texts.

4.3 Data file formats

A universal data format has been projected. It will
support a structure of multi-dimensional arrays defined
on a space of argument arrays, and a structure of
dependencies. Some other data is also supported, such as
version signature, denotations, comments, date, time,
duration of an experiment and so forth.

Two forms of the format are projected: binary and
plain ASCII. The second one, being much less compact,
is human-reading and suitable for exporting to other
systems.

The MOON Lab data format will cover most needs of
experimental physics. It will be recognized using the
MOON Lab data viewers and it will be made possible to
pass it with virtually no additional explanations.

Similar data formats have been implemented for a
former prototype of the MOON Lab for DOS system.

5 CONCLUSION
The MOON Lab facilitates programming of the

measurement applications for beam diagnostics and
gives wide capabilities and flexibility. It is a good choice
for solving of several relatively small independent
problems and linking them together.

The novelties of the programming technology
introduced can be of interest for many fields of
experimental science.

REFERENCES
[1] Barbara H. Liskov, Alan Snyder, ‘Exception

handling in CLU’, IEEE Transactions on Software
Engineering SE-5(6), pp. 546-558 (1979)

[2] Narain Gehani, ‘Ada: an advanced introduction
including Reference manual for the Ada
programming language’, London: Prentice Hall,
1984

[3] Annotated Ada Reference Manual. Language and
Standard Libraries. International Standard ISO/IEC
8652: 1995 (E)

[4] Bjarne Stroustrup, ‘The C++ Programming
Language’, 2nd Edition, Reading, Mass.: Addison-
Wesley, 1991 (repr. 1995)

[5] E. W. Dijkstra, ‘Cooperating Sequential Processes’.
In Programming Languages edited by F. Genuys,
London: Academic Press, 1968

