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1   INTRODUCTION
A key issue in the conceptual design of a ion driven ICF
reactor is the final focusing system [1,2]. In fact the
possibility of a strong focusing of the beams in very
small spots is a condition for achieving the required
energy deposition power to implode the pellet. On the
other hand the capability of concentrating the beam
relaxes the need for high intensity, allowing a more
realistic accelerator design.

This requirement has stimulated new effort in the
magnetic lenses design and some solutions have been
proposed in order to gain large concentration factors.
Among these the plasma lens solution seems to be
particularly appropriate for ICF for various reasons [3,4].
In particular it has been recently proposed a new attractive
scheme, called adiabatic plasma lens focusing [5], for the
collection of multiple converging beams in the reactor
chamber.

Classical fundamental limitations to the beam
focusing are, as it is well known, the so called transverse
emittance of the beam, the space charge effects and the
beam momentum spread (or longitudinal emittance). A
different kind of limitations could arise from non-linearity
in the field profile [6]. In the strong focusing area, when
large convergence angles and small spot sizes have to be
reached, another fundamental limitation arises from the
effects of transverse-longitudinal motion coupling. They
have, in fact, to be carefully considered in order to
establish the related limitations in the focusing process.
This point has been often disregarded because of minor
importance in traditional focusing systems, as for
example quadrupoles multiplets, where the so called para-
axial approximation holds. On the contrary, as long as
the converging angle increases, the condition for this
approximation  weakens and the arise of some kind of
aberration is expected [7].

In this work we develop a model, starting from the
complete equation of motion for the beam particle in an
axial symmetric azimuthal magnetic field (the one
produced in a plasma lens), which takes into account in
the exact way the transverse-longitudinal coupling effects.
The analysis can be easily extended to more general
situations, where no axial symmetry is supposed.

After a brief description of the mathematical model
for fully coupled motion we obtain the exact solution by
means of elliptic integrals. Moreover we discuss some
general properties of the coupled dynamic. A simpler
model, based on the thin lens approximation is also
proposed and its results compared to the general ones.
Finally dimensionless parameters are related to cases of
practical interest and the aberration effects are evaluated in
those cases.

2   THE MATHEMATICAL MODEL
We consider the trajectory equation in the case of axis-
symmetric magnetic field. Because of the symmetry it is
possible to study the motion in a generic transverse plane
x, z . Let v = vx ix + vz iz  the velocity of a particle in this
plane. The equation of motion is m dv dt = qv × B ,
where m  is the particle mass, q its charge and B  the
magnetic induction field. The conservation of energy

gives vx
2 + vz

2 = const= k
2

, where we assume vz always
positve. From these equations is straightforward to obtain
the trajectory equation for the transverse motion. Let us
first introduce dimensionless coordinate x=x/R, z=z/R,
being R the lens radius (or aperture). If we denote with ′x
the derivative of x respect to z the trajectory equation
takes the form:

′′x + α2
1 + ′x

2( )3 / 2
f x( ) = 0 , (1)

where B = B0 f x( ) , with f a proper dimensionless
"shape" function, and

α2 = qB0R

mk
. (2)

The equation (1) may be rewritten in a normal form:

′x1 = α2
1+ x1

2( )3/2
f x2( )

′x2 = x1

, (3)

where x1 = ′x , x2 = x .
It is straightforward to verify that Liouville's theorem no
longer holds for system (3), as expected.

3   THE "THICK LENS" SOLUTION

By multiplying the autonomous equation (1) by ′x  it is
easy to obtain its first integral:

α2
g x( ) − 1 + ′x

2( )−1/ 2
= Γ , (4)

where f x( ) = dg x( ) dx  and Γ  has to be regarded as a
constant of the motion, satisfying the condition

−1≤ Γ < 0. Solving equation (4) for ′x( )2  we obtain:

′x( )2 = 1

α2
g x( ) − Γ[ ]2

−1= h y( ) . (5)

The function h y( )  has zeros where α2
g x( ) − Γ = ±1.

Because of the assumption vz > 0 , it follows



α2
g x( ) − Γ ≥ 0, so the only zeros of physical interest are

where α2
g x( ) − Γ = 1. As f is an odd function, g must be

an even function with two symmetric zeros in ±x , that
we assume to be simple zeros. For example, for linearly

growing magnetic field, f x( ) = x  and g x( ) = x
2

2 , so

that x = 2 Γ +1( ) α .

Finally, the solution of equation (5) is given by:

z = dχ
h χ( )x0

x

∫ . (6)

Because of the structure of equation (5) we may foresee
oscillations between ±x . In fact, let −x ≤ x0 ≤ x , then

if ′x0  is positive it remains positive till x  reaches the
point x . A formally possible solution henceforward
would be x= constant = x , but this is excluded by the
original equation (1). Hence ′x  must reverse its sign and

x  decreases steadily to −x , where ′x  again reverses. So

x  is periodic of period:

Ω = 2
dχ
h χ( )

=
−x

x

∫ 4
dχ
h χ( )0

x

∫ . (7)

Moreover, as x  bounces between the two zeros of h(x), if
x0  belongs to this interval, we have to assume x ≤ 1,
otherwise the particle would run out of the lens. This
limits the acceptance of the lens. For an elliptical shape
of the beam in the phase plane we have

x
2 + ′x

2
R

2 ε2 = 1 and for a particle initially on the axis
( x0 = 0) we may find the maximum value of Γ  and,
consequently, the maximum of ε. For a linearly growing
magnetic field, for instance, we have:

εM = R 1 1− α2
2( ) −1




1 2

. (8)

The integral in equation (6) can be analytically
carried out, resulting:

z = 1

α
2E β,m( ) − F β,m( ) −{

           2E β0,m( ) + F β0,m( )} .
(9)

where β = cos
−1 αx

2 Γ + 1( )








 , β0 = cos

−1 αx0

2 Γ + 1( )








 ,

m = Γ +1( ) 2 and F and E are respectively the elliptic
integrals of first and second kind.

The equation (10) for fixed length of the lens z=l,
gives, in an implicit form, the transformation map M of
the focusing system in the phase space coordinates

x(l) = M l x 0( )[ ] , where x = x, ′x T . (10)

4   "THIN LENS" APPROXIMATION
A method that allows the a simple construction of an
analytical approximation of the map (10) is the thin lens

approximation  (or one kick approximation). In this case
one considers the magnetic field concentrated in one
point. In this model, a different definition of f in equation
(1) is needed:

ƒf x ;z( ) = Π∆ z( )f x( )    for   ∆ → 0 , (11)

where

Π z( ) =
1 / ∆   for  0 <z < ∆
0        for  z < 0,  z > ∆ 



 ,

(12)

and z = ∆  is the lens end. From the physical point of
view we are considering a lens for which ∆ Ω <<1, that
is, the lens length is much smaller than the characteristic
wavelength Ω  of the betatron oscillation.

The one kick approximation consists in solving
equation (1) assuming the particle position x(z)
constant within the lens region ( 0 < z < ∆ ), that is:

x(z)≅ x(0)   for   0 < z <∆ . (13)

Under this assumption, the simplified equation:

′′x + α2

∆
1+ ′x

2( )3/2
f x 0( )[ ] = 0,    0 < z < ∆ , (14)

have to be solved with the initial condition on ′x (0), to
get an approximation of ′x (z) at z=∆ (a thin lens acts on
the transverse momentum of the particle and leaves
unchanged its position). Its solution gives directly:

′x ∆( ) = ′x 0( ) + F x 0( ), ′x 0( )[ ] , (15)

where

F x 0( ), ′x 0( )[ ] =
c ′x 0( )[ ] − αf x 0( )[ ]

1− c ′x 0( )[ ] − αf x 0( )[ ]{ } 2
(16)

with    c ′x 0( )[ ] = ′x 0( ) 1+ ′x
2

0( ) . (17)

Let us consider a focusing system consisting of a
thin lens and drift section of length d . The total transfer
map M(d)  of this system is then given by

x d( ) = x 0( ) + ′x 0( ) + F x 0( ), ′x 0( )[ ]{ } d

′x d( ) = ′x 0( )) + F x 0( ), ′x 0( )[ ]
 (18)

The equations (18) allow us to describe analytically the
behaviour of the trace-space contour (the trace-space
contour is related to the projection of the phase-space
boundary into the x− ′x plane), as function of d and of
the other beam parameters.

Due to the coupling between the x−motion and the
z-motion, the area enclosed by the x− ′x  contour is not
conserved across the lens. The change of this area depends
on the determinant of the Jacobian matrix of the non-
linear mapping (18).

5   THE EFFECT OF NON LINEARITY
In the following we assume, for the shape function f the
linear function f(x)=x. In fact, if the transverse to
longitudinal coupling is neglected, this choice leads to a
linear map for the focusing element. Therefore in this



way we are able to consider separately only the non-linear
effect due to the coupling.

In order to show the aberration effects on the beam
contour we report, in figure 1, the results, for an elliptic
phase space contour beam of dimensionless emittance
ε = 0.2, focused according to the map (11) for α = 1;
figure 1a shows the trace space particle trajectories, figure
1b the corresponding entrance and exit phase space beam
contours.
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Figure 1a: trace space plot of the trajectories of particles 
in a lens described by the map (11) for ε = 0.2, α = 1
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Figure 1b: phase space plot for the entrance and exit 
beam contours for the same parameters of fig. 1a.

The distortion both in the trace space and in the phase
space contour is evident. This distortion determines an
increase in the spot size at the focal plane compared to the
case of negligible coupling. This phenomenon is due to
the dependence of the focal distance by the initial
condition of the particle.

The aberrations due to longitudinal-transverse
coupling can be conveniently described by the increase of
the spot dimension at the focal plane of an ideal parallel
beam. In fact, in the case of a parallel beam (x'=0) the
focal distance depends only on the initial position x0.

zf = 2E m( ) − K m( )[ ] α . (19)

By approximating the elliptic integrals a simple explicit
relation for the focal distance zf  can be obtained for small
values of α  :

zf ≅ π
2α

1− 3α2
x0

2

16












. (20)

The focal length is a decreasing function of x0. This can
be easily explained once one consider that a more external

particle suffers a larger deflection from the lens, and
consequently a larger decrement of the longitudinal
velocity. This gives the idea, to be further investigated,
that it is possible with a suitable shape of the magnetic
field to compensate this kind of aberration.

From equation (20) is then possible to directly
express the corresponding transverse spread ∆xf :

∆xf ≅ 3π
64

α2

1− α2
. (21)

It is worth noticing that the scaling expressed by (21) is
in very good agreement to the results one obtains from
the thin lens model previously discussed. For α = 0.1,
for instance, the latter gives ∆xf = 0.0013, that is less
than 10% smaller than the result given by (21).

6   CONCLUDING REMARKS
The concrete consequences of equation (21) are clear once
the dimensionless parameter α  is related to the physical
parameters. For cases of practical interest in the context
of ICF applications we consider, as focusing element, a
plasma lens with a current in the range 10 kA to 1 MA,
that is at the present time a realistic range. It is
straightforward to relate α  to the lens current and to the
beam magnetic rigidity. For a magnetic rigidity ranging
between 1 to 10 Tm the α  parameter ranges between
0.01 and 1. Larger values of α  are related to large
convergence angles in the focused beam, so that the
aberration is stronger as the angle increases, as expected.
In the dimensionless model the convergence angle directly
corresponds, both for the thick and thin lenses, to the
ratio of the lens aperture to the focal length. In common
applications of plasma lenses this ratio rarely exceed the
value of 1/10, corresponding to distortions of the order of
10-3 of the initial beam radius. On the contrary, in the
adiabatic focusing, for which very large converging angles
have to be considered because the multiple beam design,
the effects of the coupling have to be carefully considered.

A perspective for future work is to consider the
possible correction of the considered aberration with a
proper non-linear profile for the magnetic field in the
lens.
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