Relativistic Effects in the Particle Acceleration by Large Amplitude Waves$

Renato Paktér Gilberto Corsé and Felipe Barbedo Rizzato
“|Instituto de FSica — USP, C.P. 66318, 05389-97&80Faulo, SP, Brazil
bInstituto de KSica — UFRGS, C.P. 15051, 91501-970 Porto Alegre, RS, Brazil

Abstract any rate, fony < c the soliton-like acceleration is shown

In this work, we reconsider the problem of particle ac:celell—.0 _be of rel_evance. In fact, it is showr_x that for_a given and
finite amplitude of the wave, there exists a unique value of

ation by large amplitude electromagnetic waves. We make < ¢ which produces maximum acceleration. and that
use of a fully relativistic Hamiltonian formalism to show Up = G P '

that, as opposed to nonelativistic results recently obtaint%.laIS unique value ob, is closely related to the one respec-

[1], acceleration in unmagnetized systems is severely are to.the soliton-like process. .
In view of the necessary conditia, < ¢, one needs

rested when the phase-velocity of the electromagnetic ) .
medium that decelerates the relevant electromagnetic

mode approaches the speed of light. For subluminods
PP b g odes. As experimentally shown [8], the deceleration can

waves, however, acceleration is shown to be still effective!! ) . i . ) ;
be obtained if one places the system in a dielectric medium

whose refractive index is larger than unity. The resulting
1 INTRODUCTION energization process could be loosely seen as an inverse

With the advent of powerful radiation-generation sysCherenkov effect where particles gain energy from a reso-
tems such as free-electron lasers, cyclotron autoresonaf@t wave propagating with phase-velocity smaller than the
masers, gyrotrons, and ion-channel lasers, a good dealspreed of light.
effort has been directed to the study of the interaction of
low-energy particles and large-amplitude electromagnetic 2 THE MODEL
waves [1-7]. Whenever wave-particle exchange is likely to
occur particles can be highly accelerated, a feature of im- In the model we consider charged particles interacting
portance not only for particle acceleration itself, but alsavith an intense right-hand circularly polarized electromag-
for the current-drive techniques of controlled thermonuretic wave of frequency and wave-vectok = kz. The
clear research. vector potential of the wavéy,, is written as

Theoretical models have been developed in order to in-
\{estigate the_dynamics of charged par_ticl_es, either magne- A — 2ec [sin(kz — wt)% + cos(kz — wt)y], (1)
tized or not, in intense electromagnetic fields. In particu-

lar, Kuo & Lee [1] have analyzed the interaction of accel; heree is the wave eletric field amplitude andk the speed

erating single-particles with a strong circularly polarize f light: the phase-velocity of the wave,, is obtained as
electromagnetic wave in the absence of a background mag- — w’/k ¢
netic field. Based on a Lorentz-force nonrelativistic for- d)Ithhe .present paper we are mainly interested in the

malism, they have derived a nonlinear Swmtiriger equa- S . . . .
. . . . . . wave-particle interaction leading to particle acceleration.
tion governing the time evolution of a single-particle paral-

) . . Therefore, as typical in accelerating configurations, we
lel (with respect to the wave propagation vector) velocity. ) . . L ;
. ) . o . ) . “¢consider particles with very low initial energigs; = 0.
This equation has either periodic or soliton-like solutions Lo . .
Scaling time and distance to andw/¢, respectively, and

depending on the initial conditions. In the periodic cas€ : : . .
erforming a time removal canonical transformatiBn —

particles draw energy from the wave in a reversible Wa)g)D (2— ft) - pandH — H = H — fP., the dimension-

accelerating and decelerating periodically. On the oth?rz’ . . o
. . . ess Hamiltonian system corresponding to this situation is
hand, soliton-like acceleration has been found to be moré

efficient, with the velocity monotonically increasing up to ‘ ‘
extremely large values. H V1+2€ [1 = cos(u)] + (P.)* = f P

In the present work we perform a fully relativistic anal- = y-fPF, (2)
ysis of the problem. It is found that soliton-like solutions
with finite wave amplitudes may only appear in those casd¥th

where the phase-velocity of the wawue,, is smaller than P, = —OH/0¢ = —e*sin(¥)/(f7), 3)
¢, the speed of light; in deep contrast to the nonrelativistic .
results obtained in [1], as; — ¢ the wave amplitude nec- ¢ =0M/OP, = P./v - f, (4)

essary to drive soliton-like acceleration tends to infinity. A%Nhere the dot stands for time derivative, rid- ¢,)/f =

*Work partially supported by FAPESP, FINEP and CNPq Y.




3 ACCELERATION PROCESS

3.1 Soliton-like acceleration

Before we start the investigation of the relativistic dy-
namics dictated by Hamiltonian (2), let us briefly analyze
the soliton-like solutions obtained within the nonrelativis-
tic regime studied in [1]. Expanding (2) fer P, < 1 one
writes down an expression for the nonrelativistic Hamilto-
nian#,, as a function of the coordinates,. andv. ,,, = \,
Pz,nr:

|
|

Hpr = (Uz,nr - f)2/2 —¢ COS(L/)nr)- (5)

One readily notes that the above Hamiltonian is a
pendulum-like one with unstable fixed points located at
vy, = and wgr. = *m. The separatrix orbit joining

these unstable fixed points and touching the,, = 0 - = 0
axis is precisely the curve along which the solitary solution m

found by Kuo & Lee [1] evolves. Along the separatrix par-

ticles are monotonically accelerated fram,,,, = 0and  gjqre 1: Phase-space portray of the relativistic Hamilto-

Ynro = 0 up tov, pr = 1 and ¢, = —7r_for f=1 . nianfore = 0.5 andf = 0.8. The separatrix is highlighted.
andt — oo (in the generic case, the maximum velocity

satisfiesv, ., = f). A major drawback of this kind of so-

lution is that the smallness conditions imposedignand 15
e are not verified whem, ~ 1. We shall proceed to cure

this failure with the appropriate relativistic analysis. Be-

fore that, however, we remark that the numerical value of

the Hamiltonian along the separatrixds With that one p—
can compute the wave amplitudg,, for which the lower ol
separatrix is just tangent to thg ,,, = 0 axis - this re-

sults in the soliton-like acceleration for particles launched
with v, ., = 0 @ande,, = 0; in agreement with previous
calculations [1] we find.p nr = f/2.

Let us now turn to the relativistic case, starting with an 05| .
initial look at the corresponding phase-space. In order to
make the phase-space analysis clearer and more similar to
the nonrelativistic case, it is worthwhile to rewrite Hamilto-
nian (2) as a function af,, instead ofP,. From the relation
P, = yv, we have 00

00 05 10
P, — Uz\/l + 2€2[1 — cos(1/1)]‘ ©)

0.2
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Figure 2: Wave amplitude,, vs. the normalized wave
phase-velocityf. Solid (dashed) line represents the rela-
Using the above equation in (2) one finds the desired funtvistic (nonrelativistic) case.
tion. In Fig. (1), we show a contour-plot & = H(v., )
fore = 0.5 andf = 0.8. Although the phase-space differs o ) o
substantially from the nonrelativistic one, the presence df — 1+ In this limit, the maximum longitudinal momen-
trapped and untrapped orbits separated by a (highlightetﬂg“ rapidly grows with. ... — 1 and infinite wave am-
separatrix trajectory can be still appreciated. plitudes are required.

In the fully relativistic case one can obtain an expression

1— (v.)?

equivalent tCe;,p , - it reads: 3.2 Generic case
Given that one has to work with finite fields we imme-
€sep = f/(2/1— f2). (7) diately rule out the soliton-like acceleration fgr = 1.

It is fairly intuitive, as can be checked with little calcula-
In Fig. (2), we plotes, andesep nr VS. f. Solid line rep-  tion, that larger wave amplitudes imply larger acceleration;
resents values obtained from the relativistic formalism anttherefore we shall not analyze acceleration efficiency ver-
dashed line those obtained from the nonrelativistic one. Asus wave amplitude. However, a subtler question yet to be
could be expected, in the relativistic casge, diverges as answered is the following: for a fixed and finite value of the



wave amplitude, what is the value ffcreating the largest
acceleration? Or in other words: what is the optimal value 10
of f? We shall address this issue from now on.

Recalling that for finite wave amplitudes the = 1-
separatrix cannot touch the = 0-axis, particles launched 08t
with that value off, atv, = 0 andy = 0, will describe un-
trapped orbits. If one decreasgshe separatrix also starts
to lower down and get closer to = 0 until, at f = fsep, 08T
it touches that axis. At this moment, initially low-energy v,
particles undergo soliton-like acceleration similarly as de-
scribed in the previous sub-section. Further decreage of
ultimately causes these low-energy particles to get trapped
in the wave field.

Let us proceed to an explicit calculation of the maximum
velocity excursions allowed in the trapped and untrapped
cases, recalling that particles with , = 0 andy, = 0

041
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always evolve in time preservirg = 1. 00 02 04 06 08 10
As can be seen from Fig. (1), untrapped particles un- f
dergo maximum excursion at = —=. At this location,

using both (2) and (6), and the fact thidt= 1, we find a Figure 3: Maximum fully relativistic longitudinal speed
quadratic equation far, Vz,mag VS f for € = 0.5.

2 2 —
L+ Af7)v; = 24fv: + 4 -1=0, (8) depends on a judicious choiceffIn other words, contrar-

ily to what could be thought initially, for finite wave fields

whereA = 1 + 4¢%. The existence of two roots far, is . ) .
the most effective acceleration does occur for subluminous

natural because the system posses two orbits With 1,
one below the lowest separatrix and the other above tméaves,f <1, andnotaff = 1. . .
highest. The solution describing the velocity excursion w Fore ~ 0.5 andw “g 10 ?HZ' VY?'Ch means electric
are interested in is, of course, the one with the lowest spe be_lds of the order ofl0 - 10" V.m~" - typlgal of mod-

erate laboratory waves - anfd = f,,:, one finds for the
untr Af — \/A2f2 —(1+ f2A) (A1) maximum longitudinal speed allowed 4, ~ 0.93c.

= . 9
zZ,max 1 -|—sz ( )
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which is the maximum trapped velocity excursion for ini-

tially low-energy particles.

In Fig. (3) we gather our results Eq. (9) and (10), and
plot the maximum velocity excursion, ,,q,, vs. f for
e = 0.5. The discontinuity in the curve appearsfat fs,
where trajectories change their topological character from
trapped to untrapped. It is apparent that the curve is not
monotonic, presenting just to the left of the discontinuity
an optimalf leading to the largest possible for a fixed
wave amplitude. It is thus seen that effective acceleration



