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Abstract

In this work we study the effects arising from the inclusion
of a stationary extraordinary mode in the resonant interac-
tion of a particle beam in a magnetized plasma and perpen-
dicularly propagating electrostatic waves. It is found that
for a stationary mode frequency of the order of the Larmor
frequency and with a suitably chosen amplitude one is able
to suppress the resonance which drives the weakly relativis-
tic dynamics into chaos. Improved regular acceleration of
initially low energy particles is thus attained. Analytical
estimates of the optimal stationary mode amplitude and a
study of the topological effects due to resonance suppres-
sion are presented. Main results are verifyed by numerical
simulations.

1 INTRODUCTION

With the advent of powerful radiation-generation sys-
tems such as free-electron lasers, cyclotrons autoresonance
masers, gyrotrons and ion-channel lasers, a good deal of ef-
fort has been directed to the study of the interaction of low
energy particles and large-amplitude waves [1-5]. When-
ever wave-particle exchange is likely to occur, particles can
be highly accelerated, which is of importance in particle
acceleration and in current drive techniques of controlled
thermonuclear research.

In this paper we study how can one improves the regu-
lar acceleration in the resonant interaction of magnetized
particles and a tranversal electrostatic wave. We analyse
the introduction of a stationary extraordinary mode. The
main idea is to generate a resonance that destructively inter-
feres with the wave-particle resonance that drives initially
low energetic particles into chaos. It is shown that for a
judicious choice of the stationary mode amplitude the dy-
namics of these particles can undergo strong modifications,
varying from completely diffuse to regular with highly in-
creased acceleration. Numerical results obtained by direct
integration of the equation of motion are shown in order to
test the validity of the method.

2 MODEL

Consider a relativistic electron beam immersed in a low
density, cold, magnetized plasma, with background mag-
netic field given byB0 = B0ẑ, perturbed both by a
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transversal electrostatic wave and a stationary extraordi-
nary mode. The vector potential related toB0 is written
asA0 = B0 x ŷ.

The electrostatic wave has an amplitudeAw and propa-
gates in thex-direction with wave vectork and frequency
!h. It is assumed to be a magnetized Langmuir wave with
Debye length sufficiently small that one can consider the
frequency to be independent of the wave vector. Assum-
ing !p � !c0, we have for the wave frequency!2h =
!2c0 + !2p � !2c0, with !p as the plasma frequency and
!c0 � jejB0=mc as the nonrelativistic electron cyclotron
frequency.

The stationary extraordinary mode have frequency!X
and wave vectorkX k x̂ related to each other by the cold
dispersion relation. Let us choose the frequency in order to
satisfy the following relation,!2X�!2h � !2p, such that it is
near the right-hand cut-off frequency. If this is the case, the
mode is approximatelly circularly polarized, and the rela-
tion ckX=!X � !p=!c0 � 1 is valid. Taking into account
the above relation and the fact that we will be interested in
the low energy particles we can safely assumekXrL � 1
(with rL as the particle Larmor radius), which enables one
to writeA � A0 +AX as

eA

mc2
= B0x f�" sin(!X t)x̂+ [1 + " cos(!X t)]ŷg;

where" � kXE=!XB0, withE the eletric field amplitude.
Introducing canonical guiding-center variables (Px =p
2I cos �, x =

p
2I sin �) and scaling time and distance

to !c0 and!c0=c, the dimensionless particle Hamiltonian
is given by

H = f1 + 2I + 4"I [sin2 � cos(!Xt)

� cos � sin � sin(!Xt)]g (1)

+ Aw

+1X
n =�1

Jn(k
p
2I)cos(n� � !ht);

where the term proportional to"2 is discarded and, as we
are considering particles with very low initial energies, we
setPz = 0 and, for simplicity,Py = 0. Since the differ-
ences between the frequencies involved in the above sys-
tem,!c0, !X and!h, are all of the order of!2p � 1, it will
be assumed in the following that!h = !X = !c0 (or in
adimensional form!h = !X = 1).

3 ANALYSIS OF THE RESONANCES

A. Pendulum-Like Electrostatic Resonances



Let us by now focus on the perturbations of the particle
motion due to the electrostatic wave. The appearance of
primary wave-particle resonances is related to each of the
harmonics in the last term of the Hamiltonian (1). Their
location in phase space can be estimated fromdt(n��t) �
0. This leads to an approximate expression, valid to zero
order, for the action at thenth resonance

In = (n2 � 1)=2; n � 2: (2)

Forn = 1 the above relation is no longer valid because for
smallI , terms proportional toAw cannot be disregarded in
dt� [4,5], leading to several changes in the particles motion.
This case will be treated in detail in the next sub-section.

These resonances are of the pendulum type, presenting
n hyperbolic fixed points andn elliptic fixed points appear-
ing for n� = 2m�, with m � n an integer. The maximum
action excursion aroundIn for particles trapped in the res-
onance is given by

�Ipendn = 2
p
F=G = 2

q
n3Aw Jn(k

p
2In): (3)

B. Non-Pendulum-Like Electrostatic Resonance
As quoted before, in the low energy case we cannot ne-

glect wave terms even in zero order calculation and par-
ticle trajectories significantly differ from a pendular one.
To see this we analyze the Hamiltonian (1) disregarding
the extraordinary mode and taking into account the leading
contributions forI <� 1. The important term in the sum-
mation (1) is the one withn = 1. Performing a time-
removal canonical transformation -� � t ! �, I ! I

andH ! h(1) = H � I - the Hamiltonian assumes the
form

h(1)(I; �) =
p
1 + 2I � I +Aw J1(k

p
2I) cos �: (4)

This Hamiltonian has been extensively studied in the limit
I � 1 in Ref. 7. Trajectories described by (4) may be
either trapped or untrapped. Trapped ones present a trian-
gular shape instead of the typical pendulum-like one.

Maximum action excursion,Imax
1 , for particles trapped

in this resonance is given by
p

1 + 2Imax
1 � Imax

1 +Aw J1(k
p

2Imax
1 ) = 1; (5)

which gives the maximumI value on the boundary (wich
has finite rotating frequency). Considering a resonance
overlapping criterium, one finds that the threshold ampli-
tude for an = 1 andn = 2 overlapping isAw;th = 0:135
for k = 1. However, the introduction of a stationary ex-
traordinary mode reduces second island amplitude, pre-
venting the premature overlap and improving the regular
energization of particles.

C. Stationary Mode Resonances
In order to study the resonances caused by the stationary

mode, one takesAw = 0 and expand the Hamiltonian (1)
for small". Considering only first order terms one realizes
that the only perturbing term that resonantly interact with
the particles is the one containing the harmonic2��t. This
stationary wave-particle resonance is a pendulum-like one.

4 RESONANCE SUPPRESSION

Let us begin by analyzing the optimal stationary mode am-
plitude, "op, in order to suppress the second electrostatic
wave-particle resonance. Comparing the perturbation am-
plitudes of the electrostatic wave and the stationary mode,
for I = I2, we can obtain an approximate value for"op as

"op =
Aw

p
1 + 2I2
I2

J2(k
p

2I2): (6)

Although at first glance the resonance suppression, as it is
presented here, seems to lead to a complete cut out of the
resonance, it actually leads to much more involved effects
to be discussed next.

To better understand the effects of the resonance sup-
pression, one can analyze the dynamics of the particles near
the second resonance by studying thedynamics of the fixed
points [6] of the island as" is varied. In order to do so,
let one write apendulum � like Hamiltonian , now tak-
ing into account the influence of the stationary mode and
also keeping linear terms of̂I = I � I2 in the perturbation.
The importance of the inclusion of linear terms inÎ will be
apparent. The Hamiltonian takes the form

h(2)(Î ; �) = (G=2) Î2 + [Aw(�0 + �1 Î)

� "(�0 + �1 Î)] cos(2�) (7)

where�i and�i are the coefficients of the Taylor expan-
sion, aroundI2, of J2(k

p
2I) and ofI=

p
1 + 2I, respec-

tively. Usual Fixed Points. Usual pendulum-like fixed
points (UFP ) appear for2�UFP = m� and ÎUFP =
�s (Aw�1�"�1)=G, wherem = 1; 2 ands = cos(m�) =
�1. In order to analyze their stability, one calculates the
matrix eigenvalues�UFP of the linearized motion around
theUFP ’s. If the eigenvalues are real the surrounding or-
bits have an expanding direction and a contracting direc-
tion, thus theUFP is hyperbolic. Otherwise, the surround-
ing orbits circulate around theUFP which is therefore el-
liptic. It is found that unless the stationary mode amplitude
is near the optimal one the stability of theUFP ’s is gov-
erned by the value ofs and half of them are hyperbolic,
half are elliptic. For" small compared toAw the elliptic
ones are those for whichs = +1, otherwise thes = �1
are stable.

If, on the other hand," is near its optimal value, such
that the condition

jAw�0 � "�0j <
��(Aw�1 � "�1)

2=G
�� (8)

is satisfied,�UFP is always imaginary and all theUFP ’s
are of the elliptic type irrespective ofs value.

Extra Fixed Points. A more detailed inspection of the
equations of motion for̂I and�, reveals that an extra set
of fixed points, which shall be calledEFP , may appear.
If the condition (8) holds, a different set of real roots of
the motion equations are found for̂IEFP = �(Aw�0 �
"�0)=(Aw�1 � "�1) and 2�EFP = cos�1[G (Aw�0 �
"�0)=(Aw�1 � "�1)

2]. For increasing" these points are
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Figure 1: Fixed point dynamics as" is varied.

initially located at the same position occupied by the un-
stables = �1 UFP . Then they start migrating in the
direction of thes = +1 UFP , colliding with them and be-
ing extinguished. Analyzing theEFP stability one finds
that the matrix eigenvalues�EFP are always real during
theexistence interval of the fixed points.

5 NUMERICAL VERIFICATIONS

Let us begin by analyzing the behavior of the second island
as we introduce the stationary extraordinary mode. In or-
der to do so we study a small amplitude case, where the
structure of the islands is not too deformed. The dynamics
of the fixed points is shown in detail in Fig. 1. By means
of a Newton-Raphson algorithm [8] the dynamical periodic
orbits are followed and their linear stability determined as
one varies". Stable periodic orbits are represented by solid
lines, while unstable ones by dotted lines. One can no-
tice a great agreement between the fixed point dynamics
presented in this figure and that described in Sec. 4. The
resonance suppression interval (the interval of existence of
theEFP ’s) is approximately" 2 [0:041; 0:053] which is
in good agreement with the predicted optimal value.

Now let us turn to the case of higher wave amplitude,
where large acceleration of initially low energy particles is
expected to occur. In Figs. 2(a) and 2(b), it is compared the
Poincaré plots of a system without and with the stationary
mode, respectively. The amplitude isAw = 0:4. For" = 0
(Fig. 2(a)) a completely chaotic phase-space is presented.
All major stable fixed points of both the first and second
resonant islands have already undergone infinite cascades
of periodic doubling and are not present. In fact, no struc-
ture is apparent anymore. One can expect some relatively
fast particle diffusion for this deep stochastic regime.

On the other hand, in Fig. 2(b), when the stationary
mode is turned on with an optimal amplitude" = "op =
1:544 � 10�1 the Poincar´e plot is dramatically changed.
Some stable fixed points of the first two islands are present
again. The whole structure of the first non-pendulum is-
land is restored, which leads to high regular acceleration of
initially low energy particles.
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Figure 2: Poincare Plots for" = 0 (a) and" = "op (b)
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