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Abstract

In this paper we identify phase-locked states among the so-
lutions of the Zakharov equations. Phase-locked states ap-
pear as resonant island chains in the appropriate Poincaré
plots and the resonance separatrix appears to bring the first
chaotic activity into the system.

It is of interest to see if low-dimensional effects play some
relevant role in high-dimensional environments. The Cen-
tral Manifold Theorem suggests that this kind of behavior
could be typical.

In the present paper we study the so called Zakharov
equations, a case where the effects of low-dimensionality
are particularly clear.

The Zakharov equations describe a large class of nonlin-
ear phenomena which can be modeled by the interaction of
a high-frequency pump with slow fluctuations of a nonlin-
ear media. Good examples of this kind of process comes
from modern nonlinear laser-plasma physics, where the Za-
kharov equations describe the interaction of high frequency
waves, like Langmuir or laser waves, with low frequency
ion acoustic modes. [1]-[5].

In modulational regimes where wave energy is not yet
dissipated in particle heating, the conservative Zakharov
equations can be written in adimensional form
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They couple the slowly varying amplitude of a high-
frequency field E(x; t), to a low-frequency sonic field
n(x; t). In the Langmuir turbulence, E is an electrostatic
field and n is a density field.

In the adiabatic regime@2t n << @2xn, the governing set of
equations can be approximated by a Nonlinear Schrödinger
Equation (NLS) which is an integrable equation. Lineariza-
tion of the NLS around an homogeneous steady-state pro-
duces growth rates for small perturbations with wave-vector
k. It is known that the system becomes unstable via a pitch-
fork bifurcation [5],[6] if k < ku �

p
2 �� where ��, is pro-

portional to the energy of the unperturbed state. Besides, if

ku

2
< k < ku; (3)

only a few modes are excited for in that case second and
higher spatial harmonics of the basic perturbingwave vector

are stable. We shall call the region defined by relation (3) the
low-dimensional region. The growth rate, �, for the small
perturbations is given by � � k

p
k2u � k2 from which is

seen that the subsonic regime �� k is valid if k2u � k2 �
1. If ku � 1 this imposes no restriction on k besides the
second inequality of relation (3), but if ku is large, one must
have

k � ku: (4)

If ku � 1, the integrable NLS can be expected to furnish ac-
curate results irrespective of the value of k. In other words,
no noticeable transition to chaos is expected as the length
scale of the system is varied. In the present work we shall
focus on nonintegrable regimes with relatively larger val-
ues of ku, ku ~<1; in that case, as soon as one abandons that
region defined by condition (4) above, chaos is expected to
set in. In a k � �� parameter space, the ku � 1 region is
located at �� � 1 and the k � ku region is a narrow band
close to curve k = ku. The low-dimensional region is con-
tained between curves ku and ku=2.

As mentioned, at k � ku the dynamics is not only inte-
grable but also low-dimensional. It can be shown that in this
case the system can be reduced to a nonlinear Hamiltonian
model with only one degree of freedom [5]. The nonlinear
coupling is obtained by setting @t ! 0 in Eq. (2), and sub-
stituting the resulting expression for n(x; t) (we shall call
it ns(x; t), “s” meaning “static”) into Eq. (1) - this is the
common procedure to obtain the NLS. Then, expanding the
electric field as E(x; t) =

P
nEp(t) e

i p k x and truncating
the expansion to the triplet consisting of the homogeneous
plus the unstable k and �k modes, the reduced Hamilto-
nian H is obtained in the form H = 2 �o

p
�+�� cos �

k2 (�+ + ��) + �+�� + �+�o + ���o, where the relevant
quantities are defined asEo;+1;�1 � p�o;+;�ei�o;+;�, with
 � 2�o�����+ and where �’s are conjugate to �’s. In
the present framework, �� � �o + �+ + �� is a constant of
motion. The Hamiltonian is integrable because of the sim-
ple coordinate dependence and the appropriate phase-space
plot is seen in Fig. (1); trapped and untrapped orbits move
around the elliptic fixed point with trapped orbits describing
closed orbits with a nonlinear frequency 
o.

According to the previous comments, as one starts to de-
crease the value of k for relatively large ��, a transition to
chaos is bound to happen. The purpose of this paper is to
identify such a transition.

At this point, one should realize the fact that the transition
must be induced by the presence of that component of the
low-frequency density which was not included in the con-
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Figure 1: Low dimensional integrable trajectories on the
(�o;  ) plane.

struction of the integrable NLS equation. We shall call this
component nf and consequently identify it as

nf (x; t) = n(x; t)� ns(x; t): (5)

where “f” means “fluctuations”. If one is within the low-
dimensional region where the most salient modes are the
ones with wave vectors k and �k, Eq. (2) readily reveals
that nf oscillates primarily with frequency 
f � k, or pe-
riod Tf � 2�=k; such a behavior shall be confirmed soon.
This fluctuation, which is excited by the high-frequency
modes, may be seen as a small perturbation to the integrable
Hamiltonian model and if its amplitude is sufficiently high
it might be possible that a 2-torus nonlinear resonance of
the type n
o = 
f be detected on the phase-space. If this
should be the case, one could say that the transition to chaos
of the Zakharov equations contains as a relevant and no-
ticeable feature, the presence of resonant islands, or, what
is the same, phase-locked states, so characteristic of low-
dimensional Hamiltonian systems.

Let us proceed to the numeric simulations to investigate
the issue. We integrate Eqs. (1) and (2) with basis on a
spectral method with N = 256 modes per dynamical vari-
able. To search for the presence of nonlinear resonances we
Poincaré plot variables �o and  each time Realfnf;k=1g
attains maximum value; dtRealfnf;p=1g = 0 with
d2tRealfnf;p=1g < 0. Plotting the dynamical variables this
way, we emulate the usual Poincaré plot of a two-degree-
of-freedom system, where the plotting is performed each
time one of the dynamical variables (here nf ) undergoes a
complete cycle; other periodic plotting conditions produces
figures similar to the ones to be shown here. In the simu-
lations we take �� = 0:1, k = 0:9075 ku,  (t = 0) = 0

and �+(t = 0) = ��(t = 0); the remaining variables are
initially set to zero, a transient period is allowed such that
ns may be effectively enslaved, and the codes are run for
about 500 - 1500 periods of nf .

Among various resonances we have found, we show the
ones seen next. From Fig. (2) one can see that under cor-
rect initial conditions a resonant island withn = 4 is found.
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Figure 2: Poincare plot forn = 4. tfinal = 4644:51 � 300

ion-acoustic cycles.

A relatively regular power spectrum can be shown to asso-
ciated with this resonant state. In low-dimensional period-
ically driven systems, chaotic separatrix may be found en-
circling resonant islands; if the initial condition is launched
well within the island the orbit is relatively regular (and so
is its power spectrum) and if the initial condition is launched
close to the separatrix, the orbit and power spectrum be-
comes progressively more irregular. This is a manifestation
of heteroclinic chaos.[7],[8]. We have found this behavior,
as can be seen in Fig. (3). The emerging chaotic character of
the separatrix was shown to be associated with a continuous
power spectrum [6]. In Fig.(4) we plot the 2-torus winding
number defined as the rate limt!1Nnf

=N�o , the capital
N representing the number of cycles of the respective sub-
scripts, versus the initial condition �o(t = 0). The winding
grows as �o(t = 0) ! �� because 
o is smaller for outer-
most orbits and the phase-locked n = 4 state is clearly seen
as a plateau. nf (x; t) can be shown to form a stationary pat-
tern. In fact, it has been suggested [9] that nonintegrablity
in this kind of system requires two counter-propagating ion-
acoustic waves, which is equivalent to the requirement of
the second time derivative of Eq. (2). We emphasize that
the resonances detected here occur for the full simulation -
no low-dimensional approximation has been used. We have
varied the number of modes used to check for convergence.

After many cycles of nf , t >> 2�=
f , the trajectories
start to blur the resonance islands. In that case low dimen-
sionality is only transient and higher dimensions eventually
start to participate in the dynamics. This is seen in Fig. (5).
However, if one takes a larger value of k such that higher
harmonics�2 k are farther from their instability region, the
low dimensional locking is stabilized. This is what we see
in Fig. (6) where a n = 6-resonance is shown to survive for
much longer stretches of time. The resonance is obtained
with n = 6 because if k is closer to ku the nonlinearities
are reduced, 
o diminishes, and the rotation number n in-
creases so as to mantain resonance.
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Figure 3: Separatrix of the n = 4 resonant island.

0.080 0.085 0.090 0.095
ρ(ο)

3.5

4.0

4.5

5.0

W
IN

D
IN

G

n=4 - locking

Figure 4: The winding number and the n = 4 locking.
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Figure 5: n = 4-locking. tfinal = 11611:3 � 750 ion-
acoustic cycles.
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Figure 6: n = 6-locking. tfinal = 74533:8 � 5000 ion-
acoustic cycles.
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