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Abstract

In this paper weidentify phase-locked states among the so-
[utions of the Zakharov equations. Phase-locked states ap-
pear as resonant island chains in the appropriate Poincaré
plots and the resonance separatrix appears to bring thefirst
chaotic activity into the system.

Itisof interest to seeif low-dimensiond effects play some
relevant role in high-dimensional environments. The Cen-
tral Manifold Theorem suggests that this kind of behavior
could betypical.

In the present paper we study the so called Zakharov
equations, a case where the effects of low-dimensionality
are particularly clear.

The Zakharov equations describe alarge class of nonlin-
ear phenomenawhich can be modeled by theinteraction of
a high-frequency pump with slow fluctuations of a nonlin-
ear media. Good examples of this kind of process comes
from modern nonlinear | aser-plasma physics, wherethe Za
kharov equations describe theinteraction of high frequency
waves, like Langmuir or laser waves, with low frequency
ion acoustic modes. [1]-[5].

In modulational regimes where wave energy is not yet
dissipated in particle heating, the conservative Zakharov
equations can be written in adimensiona form

i,E+32E=nE (@D}

and
Zn — 82n = 92|E|%. 2

They couple the slowly varying amplitude of a high-
frequency field E(z,t), to a low-frequency sonic field
n(z,t). Inthe Langmuir turbulence, E is an electrostatic
field and » isadensity field.

IntheadiabaticregimedZn << 82n, thegoverning set of
equations can be approximated by a Nonlinear Schrodinger
Equation (NLS) whichisan integrableequation. Lineariza-
tion of the NLS around an homogeneous steady-state pro-
ducesgrowthratesfor small perturbationswith wave-vector
k. Itisknown that the system becomes unstableviaa pitch-
fork bifurcation[5],[6] if k < k., = +/2 p. Wherep,, ispro-
portional to the energy of the unperturbed state. Besides, if

ky,
S <k <k, 3)

only a few modes are excited for in that case second and
higher spatial harmonicsof thebasi ¢ perturbingwave vector

arestable. Weshall call theregiondefined by relation (3) the
low-dimensiona region. The growth rate, T, for the small
perturbationsisgiven by I' ~ k /k2 — k2 from which is
seen that the subsonic regimeT <« kisvalidif k2 — k% <
1. If k, < 1 thisimposes no restriction on k besides the
second inequality of relation (3), but if k., islarge, one must
have

k=~ k. 4

If k, < 1,theintegrableNLScan beexpectedtofurnishac-
curate resultsirrespective of thevalue of k. In other words,
no noticeable transition to chaos is expected as the length
scale of the system isvaried. In the present work we shall
focus on nonintegrable regimes with relatively larger val-
ues of k,,, k,<1; inthat case, as soon as one abandons that
region defined by condition (4) above, chaosis expected to
setin. Inak x p, parameter space, thek,, < 1regionis
located at p,. < 1 andthek = k, regionisanarrow band
closetocurvek = k.. Thelow-dimensional regioniscon-
tained between curves k,, and k,, /2.

Asmentioned, a k = k, thedynamicsisnot only inte-
grablebut a solow-dimensional. It can be shownthat inthis
case the system can be reduced to a nonlinear Hamiltonian
model with only one degree of freedom [5]. The nonlinear
coupling is obtained by setting 9; — 0 in Eq. (2), and sub-
stituting the resulting expression for n(z, t) (we shall call
itns(z,t),“s” meaning “static”) into Eq. (1) - thisisthe
common procedure to obtainthe NLS. Then, expanding the
dectricfield as E(x,t) = Y, Ey(t) e*P** and truncating
the expansion to the triplet consisting of the homogeneous
plus the unstable k and —& modes, the reduced Hamilto-
nian H isobtained intheform H = 2 p, \/py p— cos ¢ —
k% (py + p-) + p1p— + P1po + p—po, Where therelevant
quantitiesaredefined as B, 11,—1 = /P, 1,— €'+, with
Y = 2¢, — ¢_ — ¢4 and where ¢’sare conjugateto p's. In
the present framework, p. = p, + p+ + p— isaconstant of
motion. The Hamiltonian is integrable because of the sm-
ple coordinate dependence and the appropriate phase-space
plotisseen in Fig. (1); trapped and untrapped orbits move
around thedlipticfixed point with trapped orbitsdescribing
closed orbitswith a nonlinear frequency €2,.

According to the previous comments, as one startsto de-
crease the value of k for relatively large p.., atransition to
chaos is bound to happen. The purpose of this paper isto
identify such atransition.

At thispoint, one shouldredizethefact that thetransition
must be induced by the presence of that component of the
low-frequency density which was not included in the con-
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Figure 1: Low dimensional integrable trajectories on the
(po, %) plane.

struction of theintegrable NL S equation. We shall cal this
component n; and consequently identify it as

ng(z,t) = n(x,t) — n,(z,t). (5)

where” f” means” fluctuations”. If oneiswithinthelow-
dimensional region where the most salient modes are the
ones with wave vectors k and —k, Eq. (2) readily reveals
that n; oscillates primarily with frequency ©; ~ k, or pe-
riodT; ~ 2 =/k; such abehavior shall be confirmed soon.
This fluctuation, which is excited by the high-frequency
modes, may be seen asasmall perturbationtotheintegrable
Hamiltonian moddl and if its amplitude is sufficiently high
it might be possible that a 2-torus nonlinear resonance of
thetypen 2, = Q; be detected on the phase-space. If this
should bethe case, one could say that thetransitionto chaos
of the Zakharov eguations contains as a relevant and no-
ticeable feature, the presence of resonant idands, or, what
is the same, phase-locked states, so characteristic of low-
dimensional Hamiltonian systems.

Let us proceed to the numeric simulationsto investigate
the issue. We integrate Egs. (1) and (2) with basis on a
spectral method with N = 256 modes per dynamical vari-
able. To search for the presence of nonlinear resonances we
Poincaré plot variables p, and 3 each time Real{ns -1}
attains maximum value; diReal{n;,—1} = 0 with
d;Real{ny -1} < 0. Plottingthe dynamical variablesthis
way, we emulate the usual Poincaré plot of a two-degree-
of-freedom system, where the plotting is performed each
time one of the dynamical variables (here n;) undergoes a
complete cycle; other periodic plotting conditionsproduces
figures similar to the ones to be shown here. In the simu-
lationsweteke p, = 0.1,k = 0.9075k,, %(t = 0) = 0
and p;(t = 0) = p_(¢t = 0); theremaining varigbles are
initially set to zero, atransient period is alowed such that
n, may be effectively endaved, and the codes are run for
about 500 - 1500 periods of ny.

Among various resonances we have found, we show the
ones seen next. From Fig. (2) one can see that under cor-
rect initial conditionsaresonant island withn = 4 isfound.
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Figure2: Poincareplotforn = 4. t4;,a1 = 4644.51 ~ 300
ion-acoustic cycles.

A relatively regular power spectrum can be shown to asso-
ciated with this resonant state. In low-dimensional period-
ically driven systems, chaotic separatrix may be found en-
circling resonant islands; if theinitia conditionislaunched
well withintheisland the orbit is relatively regular (and so
isitspower spectrum) andif theinitia conditionislaunched
close to the separatrix, the orbit and power spectrum be-
comes progressively moreirregular. Thisisamanifestation
of heteroclinic chaos.[7],[8]. We have found this behavior,
ascanbeseeninFig. (3). Theemerging chaotic character of
the separatrix was shown to be associ ated with a continuous
power spectrum [6]. In Fig.(4) we plot the 2-toruswinding
number defined as the rate lim;_.. Ny, /N,,, the capital
N representing the number of cycles of the respective sub-
scripts, versustheinitia condition p, (¢ = 0). The winding
grows as p,(t = 0) — p, because 2, issmaller for outer-
most orbitsand the phase-locked n = 4 stateisclearly seen
asaplateau. ny(z, t) can beshown toformastationary pat-
tern. Infact, it has been suggested [9] that nonintegrablity
inthiskind of system requirestwo counter-propagatingion-
acoustic waves, which is equivalent to the requirement of
the second time derivative of Eq. (2). We emphasize that
the resonances detected here occur for the full simulation -
no low-dimensi ona approximation has been used. We have
varied the number of modes used to check for convergence.

After many cycles of ng, ¢t >> 27/, thetrgjectories
start to blur the resonance islands. In that case low dimen-
sionality isonly transient and higher dimensionseventually
dtart to participatein thedynamics. ThisisseeninFig. (5).
However, if one takes a larger value of k& such that higher
harmonics+2 k arefarther from their instability region, the
low dimensional locking is stabilized. Thisiswhat we see
inFig. (6) wherean = 6-resonance isshown to survivefor
much longer stretches of time. The resonance is obtained
withn = 6 because if k is closer to k,, the nonlinearities
are reduced, 2, diminishes, and the rotation number n in-
creases S0 as to mantain resonance.
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Figure 3: Separatrix of then = 4 resonant island.
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Figure4: The winding number and the » = 4 locking.
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Figure5: n = 4-locking.
acoustic cycles.
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Figure 6: n = 6-locking. tfinar = 74533.8 ~ 5000 ion-
acoustic cycles.
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