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Abstract

We derive the impedance of a circular hole in the inner
tube of a coaxial beam pipe. The method used differs from
the classical Bethe’s theory since, in the calculation of the
electric and magnetic dipole moments, we take into ac-
count also the scattered fields in the aperture to match the
power conservation law. The low frequency impedance
shows a real contribution accounting for the TEM waves
propagating within the coaxial waveguide. The method is
also applied to the case of the outer tube closed at both
ends by conducting plates, thus forming a coaxial cavity.
The resistive part of the longitudinal impedance obtained
can be predominant near the cavity resonances.

1  INTRODUCTION
The impedance of a hole in a beam pipe has been exten-
sively analyzed for many hole shapes and distributions
[1-4]. At low frequencies, when the wavelength is much
larger than the hole dimensions, the classical method of
study involves Bethe’s diffraction theory [5], stating that
the hole is equivalent to a magnetic and an electric dipole,
which moments are related to the incident field. In the
first order this method is insensitive of the structure sur-
rounding the pipe and yields a pure imaginary impedance.
More recently the real part of the impedance has been cal-
culated considering the energy radiated into the pipe and in
the free space [6-8].

We improve the impedance calculations giving a
method applicable for any geometry. In particular we
show the results in the case of an infinitely long coaxial
beam pipe and of a coaxial resonant cavity.

2  IMPEDANCE OF A ROUND HOLE
IN COAXIAL STRUCTURES

We assume a primary (incident) field E0, H0 produced by
a charge travelling off-axis with velocity c and an offset
r1,ϕ1 [9]. The scattered field in the beam pipe is repre-
sented as a sum of independent modes, each one propagat-
ing along both z directions after scattering occurs at the
aperture [1]:

Ei = an,mei(n,m)
+ e

− jkz(n,m)zθ (z) +(
n,m
∑

                  + bn,mei(n,m)
− e

jkz(n,m)zθ (−z))
Hi = an,mhi(n,m)

+ e
− jkz(n,m)zθ (z) +(

n,m
∑

                  + bn,mhi(n,m)
− e

jkz(n,m)zθ (−z))

(1)

2.1 Coaxial Waveguide

Similarly, the scattered field in an infinitely long outer
pipe (Fig. 1) can be expressed as:

Ee = cn,mee(n,m)
+ e

− jkz(n,m)zθ (z) +(
n,m
∑

                  + dn,mee(n,m)
− e

jkz(n,m)zθ (−z))
He = cn,mhe(n,m)

+ e
− jkz(n,m)zθ (z) +(

n,m
∑

                   +dn,mhe(n,m)
− e

jkz(n,m)zθ (−z))

(2)

where ee and he are the normalized modal function of a
coaxial waveguide [8].
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Figure 1 : Coaxial waveguide of radii b and d, with a
circular hole of radius R on the inner tube.

The coefficients an,m, bn,m, cn,m and dn,m can be
found through the Lorentz reciprocity principle. Because
of the orthogonality of the modal functions we get:

an,m = jω
2 µhi(n,m)e

− jkz (n,m )z ⋅ M +(
                       −ei(n,m)e

− jkz (n,m )z ⋅ P)
bn,m = jω

2 µhi(n,m)e
jkz (n,m )z ⋅ M +(

                       −ei(n,m)e
jkz (n,m )z ⋅ P)

cn,m = − jω
2 µhe(n,m)e

− jkz (n,m )z ⋅ M +(
                       −ee(n,m)e

− jkz (n,m )z ⋅ P)

(3)

dn,m = − jω
2 µhe(n,m)e

jkz (n,m )z ⋅ M +(
                       −ee(n,m)e

jkz (n,m )z ⋅ P)



The dipoles P and M in (3) are proportional to the true
field on the hole through the polarizability tensors αm
and αe:

M = α
m

⋅ (H0 + Hi − He ) r=b
ϕ =z=0

 

P = εα
e

⋅ (E0 + Ei − Ee ) r=b
ϕ =z=0

(4)

Substituting the expressions of the fields in (4) we de-
rive the following linear system for the dipole compo-
nents:

1 + αmµSϕϕ −αmµSϕz αmSϕr

αmµSϕz 1 − αmµSzz αmSzr
αe

c2 Sϕr −
αe

c2 Szr 1 + αeεSrr



















Mϕ
Mz

Pr















=

=
αmH0ϕ

0

αeεE0r















(5)

where we have defined:

Sϕϕ = jω
2 hiϕ (n,m)

2 − heϕ (n,m)
2( )∑ r=b

ϕ =0

Sϕz = jω
2 hiϕ (n,m)hiz(n,m) +(∑

                  − heϕ (n,m)hez(n,m) ) r=b
ϕ =0

Sϕr = jω
2 hiϕ (n,m)eir(n,m) +(∑

                    −heϕ (n,m)eer(n,m) ) r=b
ϕ =0

Szz = jω
2 hiz(n,m)

2 − hez(n,m)
2( )∑ r=b

ϕ =0

Szr = jω
2 hiz(n,m)eir(n,m) +(∑

                    − hez(n,m)eer(n,m) ) r=b
ϕ =0

Srr = jω
2 eir(n,m)

2 − eer(n,m)
2( )∑ r=b

ϕ =0

(6)

If we consider the simple case of frequencies below the
cutoff of the TE and TM modes, there is propagation in
the outer pipe only through a TEM mode. The system in
(5) reduces therefore to:

1 + αmµSϕϕ αmSϕr
αe

c2 Sϕr 1 + αeεSrr













Mϕ
Pr







=
αmH0ϕ
αeεE0r







(7)

with

Sϕϕ = jω
2 he0ϕ

2
r=b
ϕ =0

  ,  Sϕr = jω
2 he0ϕee0r r=b

ϕ =0
 

 and  Srr = jω
2 ee0r

2
r=b
ϕ =0

,
(8)

where the single subscript 0 designates the TEM modal
function.

Since the longitudinal impedance is [1]

Z/ / (ω ) = − j
ωZ0

2πqb
1
c Mϕ + Pr[ ] (9)

we finally get:

Z/ / (ω ) ≈
Z0

6π 2 k0R(R / b)2 − j +
k0R

6π
(R / b)2

ln(d / b)













(10)

Solving (7) one can also derive the dipole longitudinal
and transverse impedances [8]. They are respectively:

Z/ /
n=1(r,ϕ ) = − j

2k0Z0

3π 2b4 R3 rr1cosϕcosϕ1

∆
(11)

and

Z⊥ (ω ) = − j
2Z0

3π 2
R3

b4
cosϕ1

∆
r̂ (12)

where

∆ = 1 − j
k0R(R b)2

6π ln(d b)
(13)

2.2 Coaxial Resonator

When the outer pipe is closed by conducting plates
(Fig. 2), the expansion in propagating modes (2) is
substituted by a sum of resonant modes [5]:

Ee = cnee(n)
n
∑

He = dnhe(n)
n
∑

(14)
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Figure 2 : Coaxial resonator.



The expressions of the coupling coefficient also
change, so that we have:

cn =
− jωµknhe(n) ⋅ M + ω 2µ 1 +

1 − j

Qn







ee(n) ⋅ P

kn
2 − k0

2 1 +
1 − j

Qn







dn =
jωknee(n) ⋅ P + k0

2he(n) ⋅ M

kn
2 − k0

2 1 +
1 − j

Qn







(15)

If we limit ourselves to frequencies below the beam
pipe cutoff, assuming to have the TEM1 mode only res-
onating in the cavity, the linear system in (7) becomes

1 + αm
k0

2

k̃
H1

2 − jαmω k1

k̃
E1H1

jαeωµε k1

k̃
E1H1 1 + αe

k0
2

k̃
q̃E1

2

















Mϕ
Pr







=

=
αmH0ϕ
αeεE0r







(16)

where, for the sake of compactness, we have defined

q̃ = 1 +
1 − j

Q1
,   k̃ = k1

2 − k0
2q̃ (17)

the quality factor Q1 for such a cavity is given in ap-
pendix.

When z0=0, that is the hole is at the cavity mid-
length, it is easy to show that the real part of the longitu-
dinal impedance is

ZRE =

=
2ZK ηk1

2k0
2Q1

−1

k1
2 − k0

2 (1 + 2η)(1 + Q1
−1)[ ]2

+ k0
2 (1 + 2η)Q1

−1[ ]2

(18)

where

ZK =
k0Z0R3

6π 2b2  and η =
(R b)2 (R L)

3π ln(d b)
, (19)

and that its maximum value

ZRE,max =
2ZK η(Q1 + 1)

1 + 2η
≈ 2ηQ1ZK ≈

≈ Z0η2Q1 ln(d b)

(20)

is reached when

k0 =
k1

(1 + 2η)(1 + Q1
−1)

(21)

The imaginary impedance is given by

ZIM = − jZK 1 −{ 2ηk0
2

×
k1

2 (1 + Q1
−1) − k0

2 (1 + 2η)(1 + 2Q1
−1)

k1
2 − k0

2 (1 + 2η)(1 + Q1
−1)[ ]2

+ k0
2 (1 + 2η)Q1

−1[ ]2









(22)

so that it is zero when condition (21) is fulfilled. It should
be noted that, in the two cases presented, the real part can
change dramatically from negligible values up to several
times ZK near the cavity resonance.

3  CONCLUSIONS

The impedance of coaxial open and resonant structures,
coupled by a hole to the beam pipe, has been computed.
The analytical results agree reasonably well with numeri-
cal simulations with 3D codes. The method presented is
being used to compute more general impedances for the
resonant structure.

Appendix

The quality factor for the TEM1 mode of a coaxial-line
resonator is

Q1 =
2L

δ 4 +
L(1 + d b)

d ln(d b)







(23)

where δ is the skin depth, given by

δ = 2k0
−1 1 + (σ ωε )2 − 1





−1 2
(24)

REFERENCES

[1] S.S. Kurennoy, Part.  Acc. 39, 1 (1992).

[2] R.L. Gluckstern, CERN SL/92-05 (AP), 1992.

[3] R.L. Gluckstern, Phys. Rev. A 46, 1110 (1992).

[4] S.S. Kurennoy, SSCL-Preprint No. 636, 1993.

[5] R.E. Collin, Field Theory of Guided Waves (IEEE, New
York,1991), 2nd Ed.

[6] G.V. Stupakov, Phys. Rev. E 51, 3515 (1995).

[7] R.L. Gluckstern, S.S. Kurennoy, and G.V. Stupakov,
Phys. Rev. E 52, 4354 (1995).

[8] S. De Santis, M. Migliorati, L. Palumbo, and
M. Zobov, Coupling Impedance of a Hole in a Coaxial
Beam Pipe, Phys. Rev. E (to be published).

[9] L. Palumbo, V.G. Vaccaro, and M. Zobov, LNF-94/041
(P) (1994).


