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1 INTRODUCTION

BESSY II is a low emittance 1.7 GeV electron storage
ring presently under construction in Berlin (Germany) [1].
The injection into the storage ring is done by a full energy
booster [2]. Both rings have tight tolerances for magnetic
field and alignment errors to achive good performance. A
discussion of the effects of alignment errors for the storage
ring was given in [3]. Disturbing effects of magnetic field
imperfections on the machine optics are unavoidable, how-
ever, they can be lowered if these errors are known and the
magnets are placed into the ring dependent on their field
defects.

A scheme of constructing cost functions is presented
here, for a quantitative description of these disturbing ef-
fects due to dipole, quadrupole and sextupole field errors
[4]. A sorting method, based on simulated annealing [5],
which minimizes the beam distortion is then applied. In
case of sextupole errors, a new scheme of constructing a cost
function is suggested, based on Collins distortion functions
[6], which leads to an improved dynamical aperture.

There are many publications on this subject, however,
most of the work discussed here goes back to the paper by
E.D. Courant and H.S. Snyder [7], where a derivation of the
basic formulae is given.

2 THE COST FUNCTIONS

The magnet errors discussed here are expressed as devia-
tions of the integrated field strength from the design value,
within the frame of the hard edge model. Each magnet is
characterized by its design value and the integrated field
strength deviation located as a kick k in the center of the
magnet. A vector ~� is built up, which contains the mag-
net errors in a specified sequence ~� = (k1; :::; ki; :::; kN)
dependent on their position in the ring. For each magnet
type (dipole, quadrupole, sextupole) the sorting is done in-
dependently, all definitions which are given belong only to
a specific group.

A cost function W was developed and used to compare
different permutations of the given error set. This function
was used in the optimization by the method of simulated
annealing.

The cost function is built up, described by a vector ~W

with two components (A;B), which are constructed for
each type of magnet differently. This vector is transformed
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around the ring. A kick k acts only on the A-component.
Between the kicks ~W is simply rotated with an appropriate
phase advance, changingA andB but preserving its length.
Depending on the phase value a kick increases or decreases
the lengthW of the vector. At a given observation point,W
is given by

p
A2 +B2, dependent on the distribution of all

other errors. For a fixed error distribution,W is changing
around the ring at each kick. One observation point per
kick is sufficient because of the invariant character of W .
The individualW values are sumed up by an rms averaging
to a single number W; this is the value of the cost function
of a specific error distribution. By permutation of the error
distribution a new cost function is obtained. The goal is, to
permute the errors and to minimize the cost function.

The vector components (Ai; Bi) at different observation
points i are linearly related to the error vector by a matrix
T. Combining them in a common vector yields:

((A1; B1); :::; (Ai; Bi); :::; (AN ; BN )) = T ~�

In a fast computer simulation only the error distribution of
~� is permuted to obtain the new (Ai; Bi) vectors, while the
matrix stays unchanged. The matrix is dependent on the
linear optics and the magnet type. From these vectors, the
new cost functionW is extracted.

2.1 The Dipole Cost Function

Dipole errors cause closed orbit deformations. The kick
strength ki is defined as the difference between the mea-
sured and designed dipole bending angle �i � �0 of the ith

dipole. The closed orbit is kicked by this error and oscillates
in a closed loop around the ring.

A single kick k and the disturbed closed orbit vector
~xco = (x; x0) are related by the one turn transfer matrix of
the ring. The amplitude of the closed orbit is given by

x = k=2
p
��i cos(�=2� j� j)= sin(�=2),

where � and �i are the beta functions at the observation
point and the kick position, � is the phase advance around
the ring and � is the distance between the kick position
and the observation point.

Using the linear transfer properties of the ring, the vector
~xco can be calculated at any other position. Several kicks
at different locations are added by superposition to get the
resulting closed orbit (xi; x0i) at any position. The vector
(Ai; Bi) is then constructed by using the local Twiss pa-



rameters (�i; �i):

Ai = (�ixi + �ix
0
i)=
p
�i , Bi = xi=

p
�i ,

and for the dipole case W is the Courant-Snyder invariant
of the closed orbit oscillation. Minimizing this type of cost
function leads to small amplitudes and slopes of the closed
orbit oscillation.

2.2 The Quadrupole Cost Function

Focussing errors of quadrupoles are responsible for a beat-
ing of the beta function. The difference ki = gi � g0
between the measured integrated focussing strength and
its designed value is located as a kick in the quadrupole
center, which generates the distortion �� = � � �0 and
�� = �� �0 of the Twiss parameters. The resulting beta
function distortion is oscillating with twice the betatron
phase around the ring.

Applyinga matrix approach, an additional focussing kick
in the quadrupole yields a distorted matrix, which can be
expressed in terms of the undistorted one. The distorted
beta function is given by (and similar for the �-function):

��=�0 = ��k cos(2 j� j � �)=(2 sin�).

Superposing the effects of focussing errors in different
quadrupoles, the distortions of the Twiss functions can be
calculated. The vector (A;B) is now constructed by:

A = (��0 � �0�)=
p
��0, B = (� � �0)=

p
��0,

as given in [8] for chromatic focussing errors of
quadrupoles. The cost function is composed as the rms-
value obtained from the vertical and horizontal plane.

2.3 The Sextupole Cost Function

In the case of the storage ring, the effect of sextupole field
errors is minimized. As a new approach, a cost function
based on the distortion functions introduced by T. Collins
is suggested. There are 5 distortion functions, describing
nonlinear effects of sextupoles, given in his notation asB1,
B3, Bs, Bd, �B and A1, A3, As, Ad, �A, where the Am

functions are derivatives of the Bm functions. For a sin-
gle sextupole, a distance � m away from the observation
point, these functions are of the type

Bm = sm cos(j� mj � �m=2)=(8 sin(�m=2)),

where the index m indicates one of the five functions. The
sextupole strength sm and the phase advance �m around
the ring are scaled in an appropriate way.

The definition of the distortion functions is not fully re-
peated here, only the steps how to use them to construct
cost functions. The functions has to be calculated twice,
using sextupoles at their design values and including the
errors. The difference (Am � Am;0; Bm � Bm;0) is now

the vector (A;B) which is used to calculate the cost func-
tion, its length is conserved between adjacent kicks. The
rms value of the length calculated around the ring and the
rms value of all five functions yields the value of the cost
function. Minimizing the cost function by sextupole error
permutation reduces the nonlinear beam mismatch, on the
level of the approximation valid for the distortion functions.

3 SIMULATED ANNEALING

The cost function W defined as discussed above, does not
show a minimum, which can be reached by a gradient like
approach. For N magnets all possible permutations are
growing with (N �1)!=2. A computer simulation checking
all possible cases would be too time consuming.

The method of simulated annealing is typically applied
for these kinds of problems to find a solution close to the
minimum in acceptable time.

For a given error vector ~�0 the value of the cost function
W0 is calculated and compared with the cost function of a
permutated error set. The new permutation is obtained from
the previous one by some few, well defined steps. First, one
indicates in the given error vector, a sequence of elements
by randomly choosen start and end elements. Second, this
string is moved to a randomly choosen position inside the
error vector, or alternatly, is simply reversed. With this
new error vector, a new value of the cost function W is
calculated.

If the new distribution results in a smaller cost function,
it is taken as a new reference ~�0. Also, in case the new
cost function is larger and differs by an amountW�W0 =
�W> 0, this distribution will be taken as the new reference,
if e��W=T is above a given (randomly choosen) threshold.
Here T serves as a temperature like parameter, which is
lowered with increasing number of permutations.

In this way one scans the values of the cost functions in
the vicinity of the present reference point but avoids being
trapped in a local minimum. The resulting solution of the
cost function is not necessary the smallest one, but it is close
to the minimum. As a comparison, the same algorithm is
used to find the worst case yielding a large cost function.
The differences between the worst and best solution is a
measure of the gain which is achivable with the sorting.

4 RESULTS

Measured magnetic field defects [9] of the booster dipoles
and quadrupoles are used for the simulation. For the storage
ring magnets, the errors are not yet available, but they are
simulated by a Gaussian error distribution.

Results of sorting the dipoles of the BESSY II booster
synchrotron are presented in fig. 1. The best and worst case
scenarios are displayed. The rms-error of the integrated
dipole strength was measured as (��=�)rms = 1:7=104.
For the storage ring, a calculation with simulated errors
of (��=�)rms = 4:5=104 yieds a closed orbit oscillation



amplitude of up to 0.1 mm for the best case, growing to 4
mm for the worst case.

For the quadrupole sorting, the results of the booster is
shown in fig.2, based on measured values (�g=g)rms =
2:5=104. The simulation for the storage ring scenario used
focussing errors of (�g=g)rms = 1=103. A beta beating
��=� for the minimized case of 5 % was achived, whereas
the worst case was 6 times larger.

Optimizing the distributionof integrated sextupole errors
of the storage ring resulted in a clear enlargement of the
dynamical aperture, as shown in fig.3. The tracking is based
on 1000 turns, nominal particle momentum, no additional
errors are activated and no insertion devices are included.
This simulation is based on expected integrated sextupole
errors of (�m=m)rms = 1=102.

Figure 1: Best and worst case of the closed orbit ampli-
tude along the the booster synchrotron circumference. The
vertical axis is the oscillation amplitude in units of [mm].
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