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1.  ABSTRACT AND INTRODUCTION

The Damped Detuned Structures (DDS) currently under
construction to serve as accelerating cavities for the NLC
Test Accelerator (NLCTA) incorporate both damping and
detuning as a means of suppressing the transverse
wakefield.  Detuning is accomplished by systematic
variation of cell parameters so as to produce a spread in
the frequencies of the dipole modes excited by the beam,
and damping is accomplished by coupling the individual
cells to four waveguide-like structures (called damping
manifolds) that run parallel to the cavity and propagate
dipole mode energy to loads coupled to the ends of these
manifolds.  The details of the DDS as well as the rationale
underlying its design are discussed in [1].  It differs from
previously considered designs [2] in that the manifolds
have only one propagating mode in the frequency range
of interest and also in that, like the cells, their parameters
vary along the structure.  The previously reported
equivalent circuit analysis [2] has been elaborated in the
following respects:  (1) The treatment of the manifolds
has been modified so as to take account of the effect of its
coupling to the cells on its propagation characteristics and
also to include the effect of their cell-to-cell variation.  (2)
The manifold-to-cell coupling network has been modified
to take account of the TE10 like character of the manifold
propagating mode.  (3) The chain of resonant circuits
intended to represent the cells has been doubled
(following Bane-Gluckstern [3]) to take account of the
mixed TE-TM character of the dipole modes.

2.  EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuit which we use to represent the
structure is  shown in Fig. 1.  The LC circuits represent
the TE and TM  components of the dipole field of the
individual cells.  Each component is magnetically coupled
to both components of the adjacent cells.  The  electron
beam excitation of the cavity is modeled by the input
currents to  each of the TM cells.  The manifold structure
is modeled by the uppermost  sequence of transmission
line sections each carrying a TE10 waveguide mode and
shunted by an LC circuit at the junction of adjacent
transmission lines.  Coupling of the accelerator cells to
the manifolds is represented by a coupling between the

shunt capacitance of the manifold and the capacitance of
the TE component of the corresponding accelerator cell:
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where (Cn ,cn) represent the manifold shut capacitance
and TE cell capacitance respectively, (Vn,vn) the
corresponding voltages across them,  and (In , i n ) the
currents through them.  Thus the dimensionless quantity
κ n  provides the manifold-cell coupling.
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Figure 1: Circuit Model of DDS

  The network equations for the circuit in Fig. 1 can be
written in  the form given below (the detailed relations
between the circuit parameters are given elsewhere [4]).
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Here a, $a , and A are N (N=206) component vectors
proportional to the loop  currents ( in ) in the TE circuits,

the loop currents ($i n ) in the TM circuits, and the shunt
voltages (Vn), in the manifolds respectively.  B is also an
N component vector proportional to the driving currents.
R, H, $H, Hx  and its transpose Hx

t , and G are (N x N)



matrices.   Their non-zero matrix elements have the
following form:
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There are nine n-dependent parameters per cell exhibited
in the above equations.  We discuss them below. The
quantity φn  represents the local phase advance per section
of the manifold regarded as a quasi-periodic structure
with slowly varying  properties.  Three parameters are
required for its description: Fc  corresponding to the
cutoff of the local waveguide section, F to the  resonant
frequency of the series capacitance-inductance shunt, and
α to the shunt capacitance itself.  The n-independent
parameter L is the  section length, and for our structure is
equal to one third the wavelength  of the accelerating
field.  In writing eqs. (3) and (4) we have omitted terms
second order in the section-to-section variation.  The
quantities fn , $fn  correspond to the resonant frequencies of
the TE and TM component of the cells, respectively,
when the Γ‘s and η‘s are neglected.  The three η's
represent the mutual inductances of  Fig. (1) in an
obvious way.  The ninth parameter, Γ, represents the
manifold-to-TE coupling.  It is a function of α and κ and
is used  in place of κ.
 With Γn  set equal to zero, the cell equations become
identical  to those of [3], and the explicit connection of the
relevant parameters to the circuit can be found there.  The
source vector B in eq. (2c) is expressed in terms of cell
kick factors in precisely the same manner as in sections
2.3 and 3.2 of [3].  Also we follow [3] in terminating the
chain of cells as implied by simply requiring, n, n ±1 to
all belong to the set {1,...,N}.  In this paper, we terminate
the manifold with an outgoing wave boundary condition,
which can be shown to require that we replace R11 and
RNN  by − exp( )jφ1  and − exp( )j Nφ  respectively.  For
most purposes  we eliminate the explicit appearance of the
manifold amplitude vector A by  using eq. (2a) to bring
the RHS of eq. (2b) to the second form shown.

3. THE DETERMINATION OF THE PARAMETERS

The parameters are determined by fitting to the
frequency versus  phase advance dispersion curves of the
three lowest modes of strictly  periodic structures having
the dimensions of a selected representative  set of cell
dimensions.  These are determined from MAFIA
frequency domain  simulations of a single section with
specified phase advance boundary  conditions.  The

dispersion relation is obtained from eqs. (2) using  the
definitions in eqs. (3) to (9) and is as follows:
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As an example of the procedure, we illustrate its
application to cell 106  in Fig. (2).
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Figure 2: Brillouin Diagram for Cell 106 (Avoided
Crossing shown inset)

 The parameters are determined by requiring that the three
curves pass through nine selected phase-frequency pairs
(the large dots in Fig. (2)) determined from  simulations.
The 0 and π phase advance points provide six pairs, and
three points near the avoided crossing provide the rest.
The dashed  curves are obtained by setting the RHS of eq.
(10) to 0.  They represent  the dispersion curves of the
lower and upper dipole modes and of the  manifold mode
when direct manifold-cell coupling is suppressed.  The
smaller dots in Fig, (2), also from simulations, are used to
assess the quality of the fit rather than for parameter
determination.  As discussed in [2], effective damping is
associated with the crossing of the  lower dipole mode
and the manifold mode.  When the coupling is included
the crossing is avoided as shown by the solid curves.  The
cell  kick-factors required both to relate the current source
to a driving bunch and to compute the transverse kick
which it imparts to a trailing bunch [3] are also
determined from the simulations.

The parameter determination is carried out as above
for eleven selected cells.  A smooth fit as a function of
cell number is then formed to provide values for all of the
cells and also for quantities with half integer designations.

4.  DETERMINATION OF THE WAKE FUNCTION

We have evaluated the wake function  functtion (rather
loosely referred to as a wakefield in [1,2 &3]) by means
of the modal expansion method, both perturbative as
discussed in [2] and non-perturbative as discussed in [1]
(see eq. (2)).  The unperturbed mode distribution function



and the kick-factor weighted mode distribution function,
both obtained by setting G equal to zero in eq. (2b), are
shown in Fig. (3 inset) and Fig. (3) respectively.  They
should be compared to Fig. (19) a and c of [3].  Because
of the f dependence in Hnn, the computational problem of
obtaining the modes is somewhat more involved than for
the corresponding problem in [3], but a straightforward
iteration procedure proved to be rapidly convergent.
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Figure 3: Kick-Factor Weighted Density Function
(Density Function, δn/δf, shown inset)

 It also leads to a slight change in the expression for the
modal kick-factors.  Over the synchronous frequency
band of the lower dipole mode the perturbative Q varies
from 753 to 1089 with a mean value of 956.  The upper
dipole mode is not significantly damped by the manifolds
because they are non-propagating over most of the band
and lack avoided crossings where they are propagating.
In contrast to our previous experience [1], the non-
perturbative method proved to be numerically quite
challenging and excessively time consuming. As pointed
out previously [1,2], the complication arises from the fact
that the matrix is complex symmetric rather than real
symmetric, with all elements dependent upon frequency
in a complicated way. An iterative method based upon
repeated determination of eigenvalues was used rather
than the determinental method described in [1].
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Figure 4: Envelope of Wake Function

Both the real and imaginary parts of the frequency shift
showed large rather regular oscillations about the

perturbative values, large changes in the kick-factors, and
large phase shifts in the modal sinusoids [1]. (These phase
shifts represent the phase of the complex modal kick
factors whose absolute value is given by Kp[4]). The
resultant wake function, shown in Fig. (4) and including
the upper band contribution, is significantly but not
drastically degraded from the perturbative form (not
shown).  On the other hand, the short range behavior
(inset) is hardly changed. This is just what one expects on
physical grounds, but the fact that it emerges from very
different input data encourages us to trust our results. As
discussed in [5] the short range behavior is determined by
Kpδn/δf in Fig. (3), and the differences between it and Fig
(19c) of [3] accounts for the poorer short distance
damping achieved by this version of the DDS design.

5.  DISCUSSION

While we believe that the short range behavior of the
wake function  shown in Fig. 5 can be improved by a
redesign, the overall behavior is  considered to be quite
satisfactory.  There are, however, a number of  departures
in the actual structure from the design analyzed here.  The
termination of the structure on each end will involve
modification of the  last few cells and also a loading
structure.  Our method is flexible  enough to take these
changes into account once the appropriate input data  has
been obtained.  The fact that the current design is too
strongly  coupled to allow us to rely upon perturbation
theory has been a handicap,  however.  In order to
ameliorate this problem we have developed a new
method involving integration along real branch cuts rather
than the modal  expansion.  It has turned out to be much
more efficient numerically and is  also closer to an exact
treatment.  Its comparison with the method  reported here
and its application to the structure including the
modifications mentioned above will be reported in [4,5].
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