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1 INTRODUCTION

Two approaches for solving of the problem of 3D magnetic
field reconstruction can be considered:
— the immediate measurement of field in a whole given
volume;
— the solution of the boundary problem for the equation
r ~B = 0 with boundary conditions obtained by the straight
measurement.

The distinctive properties of the last approach are: the
accurate reconstruction of the magnetic field on a surface
and a precise fit of the magnetic field at the volume bound-
ary with the following 3D - field simulation. It provides
fast manifold calculations of field components at arbitrary
points of the given volume for a particle trajectory analysis.
In a general way, to solve the problem a sufficiently dense
regular 3D grid must be generated. Because of critical in-
crease in a measurement point number of the magnetic field
for the volume the alternative reconstruction of a complete
field map by calculations of the field from its boundary val-
ues is considered. Obvious decrease in a point number for
magnetic measurements on the surface makes it very at-
tractive for measurement consumption.

Theoretically this problem can be considered as follows:
— in regular regions ( a rectangular box, a cylinder, a
sphere ) rather simple analytical functions for the following
magnetic field approximation can be used; these methods
have been used with a great success in precision magnet
systems [1, 2, 3];
— the direct numerical experiment using numerical sam-
pling of a differential equation for the region with rather
complex geometry lends support the possibility of the mag-
netic field fit with the required accuracy [4];
— for nonregular regions with sophisticated geometry such
approach is rather difficult. However, the field components
are harmonic functions

52Bi = 0 in 
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andBi are assumed to be known on the surface, thus the
finite element technique [5] can be used to solve the prob-
lem effectively. Similar reasoning still stands for a scalar
potential of the magnetic field.

Obviously,Bmes
i , measured at region boundaries, are

not harmonic functions, but calculated by solving the in-

ner Dirichle problem
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Bcal
i are ones. Therefore, both the exact solutionBacc

i

of a field fit problem and the error (Bacc
i - Bcal

i ) are har-
monic functions. Thus the error reaches its maximum at
the boundary like any other harmonic function. In the case
of 3–D magnetic field reconstruction this property of har-
monic functions also permits to exclude the essential part
of planar effect of Hall probes used in magnet measuring
[6].

An analysis of computational errors can be done [5]. As
a consequence of the analysis the requirements for a sur-
face mesh width can be defined. It should be noted that the
influence of calculational errors on the magnetic field re-
construction for such approach is much less as compared to
the field measurement ones. The first stage of our approach
is building up a calculational grid ( upper index ”cal” ) and
a measurement grid ( upper index ”mes” ) to satisfy the fit
requirements. At this preliminary stage both the results of
an immediate measurement of field distribution in the vol-
ume and any 3D simulation can be used. That is extremely
important for a complete testing of a software product.

To fit a magnetic field in a given region one can use
two approaches. The first one includes the interpolation
of measurement results for each field component to for-
mulate boundary conditions and the following reconstruc-
tion of each component in the volume by solving Dirichle
boundary problem for Poisson differential equation

4 ~B = 0 in 
 ; ~Bj@
 = ~Bmes ; ~B = Bi~ei ;

~ei - the orths of the Cartesian coordinate system.
The second approach suggests the similar work for a

scalar potential of a vector field. Because of the absence
of currents in the given region, a circled integral along any
contour is zero, that is equal to the existence proof of a
scalar potential. Besides, we have

5 � ~B = 0

Thus, the potential can be found by solving the problem:
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Working out this problem one can easily fit the magnetic
field by differentiating the potential with respect to orths’



directions

Bi =
@

@xi
'

2 FINITE-ELEMENT PACKAGE
FLRECON

This well-known approach was applied for developing the
program package FLRECON by modernizing the KOM-
POT package [7].

The finite element method with standard hexahedral el-
ements (trilinear shape functions) is used for solving the
boundary problem for Poisson equation. Thus, the system
of linear algebraic equations is generated. As a technique
of solving the linear systems of algebraic equations it has
been chosen SSOR method with a polinomial acceleration
of the convergence rate on the basis of Chebyshev proce-
dures [8] andB � T acceleration process [9].

To achieve an accuracy required for practical tasks 30-
100 iteration were carried out.

Since the problem is reasonably simple, essentially the
complete automatization of the program system has been
made, which allows to use it in AT 386/387 12 MGz com-
puters.

3 FIELD RECONSTRUCTION
ACCURACY (NUMERICAL RESULTS)

If the differential methods are used for solving Dirichle
problem for Laplace equation, the solving error is known
to be maximum at the boundary like any other harmonic
function. So the measurement result error obtained at the
boundary is largely eliminated in the volume by the appli-
cation of Laplace equation.

For illustration of this fact two models (2–D and 3–D
ones) have been considered.

In the in axisymmetrical case (a 2–D model) in a rectan-
gular area of80�80 cm ( the internal boundary is defined by
the radius R=30 cm) the two kinds ofBr component dis-
turbance at the internal boundary have been investigated:
one related to a node and a high frequency distributed dis-
turbance (integrated disturbance over the boundary is equal
to zero ). The task has been solved by the use of the POIS-
SON code. The grid step has been taken to equal 1 cm
in every dimension. The error has been defined as a differ-
ence between solvings of the problem with disturbance and
without one.

Error decrement along the normal to the internal bound-
ary is shown in Fig. 1. The case of a node disturbance the
error decreases by an order of magnitude at a distance of
3 grid steps (3 cm) and by two orders of magnitude at a
distance of 20 grid steps. In the second case the error de-
creases by three orders of magnitude at a distance of 4 grid
steps.

It is to be noted that the character of error decrement de-
pends essentially on the grid step in the given region. In

decreasing this step one can expect increasing the asymp-
totic rate of error decrement proportional to the relation of
steps to some power.

Reconstruction of a magnetic field have been performed
to illustrate the efficiency of the package for a region being
close to the reality [10]. No consideration has been given
to the ferromagnetic structural elements.

The 3–D model has the following details. The cross sec-
tion is defined by a plane'=const. Four corners of the cross
section have the coordinates (0.2116,1.2), (0.9043,1.2),
(4.7512,6.305), (1.1117,6.305) in meters along R-axis and
Z-axis accordingly. The grid has the number of nodes
Nr � N' � Nz = 15 � 180 � 50 = 135000, a grid
step been uniform along appropriate dimension. Two coils
have the same dimensions as the ones in the muon mag-
net. The cross section of the first coil is defined by the
coordinates (4.07,1.6), (4.07,1.65), (4.77,1.65), (4.77,1.6).
The cross section of the second coil is defined by the coor-
dinates (4.77,1.87), (4.77,1.875), (5.47,1.875), (5.47,1.87).
Each coil carries a current of 1 A. In the case of a high
frequency distributed disturbance at the internal boundary
error decrement is shown in Fig. 2.

3–D magnetic field reconstruction for Dirichle problem
for the described model indicates that a relative accuracy
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were

Hcoil
z has been defined by a verified 3–D integral code

asHz component for the indicated coils;
Hcal

z the finite element solution.
does not exceed of (2� 3) 10�6.

4 CONCLUSION

The numerical test demonstrates a hight efficiency of this
program package. The rapid damping of a high frequency
measurement error emerging at the surface of the region
number consideration allows to increase an accuracy of
field reconstruction over the whole region. This package
provides the closest interpolation and the effective smooth-
ing of field components for any subregion of an arbitrary
shape.

The Hall probes for measuring distinct field components
are spatially delivered, therefore a procedure of field data
interpolation for a unique space grid is required. The
”boundary” method is free of that defects and permits to
interpolate the data immediately on a unique inner grid,
rather fine and regular, which is acceptable for operating
the trajectory analysis program [1].
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Figure 1: Error decrement in the given region (the 2-D
model)

Figure 2: Error decrement in the given region (the 3-D
model)


