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Abstract

    The paper describes development of a theoretical
model to interpret the observed low frequency beam
oscillation in ELETTRA and compares the calculated
results with the measurements.

1. INTRODUCTION
A notable beam instability observed in ELETTRA

since the early times is one which associates a Low
Frequency Oscillation referred to as LFO, in the frequency
range below 100 Hz, which can. be observed on the
signals from a stripline or a capacitive button electrode
with a low frequency spectrum analyser. LFOs were
observed particularly at low beam current typically below
100 mA, where the frequency was noticed to increase
quasi linearly with beam current.  As the correlation had
been verified in detail with the Higher Order Modes
(HOMs) of the cavities which can be tuned with the
cavity temperatures[1], it became clear that the LFO is
triggered by a Longitudinal Multi Bunch Instability
(LMBI)[2]. A question however remained to be understood
how a LMBI could cause LFOs. The first clue was given
by pursuing the energy dependence, which suggested
radiation damping to be involved as the frequency in many
cases increases with energy roughly as E 3.
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Fig. 1. Observed signal on a capacitive electrode.

A more definitive evidence was then given by
performing a BPM digitalisation where a button electrode,
triggered by the RF, continuously acquires the induced
voltage at every one millisecond (Fig. 1). The induced
voltage, which should represent the average longitudinal
displacement of a beam with respect to the synchronous
position, shows a fast rise followed by a slower decay
whose rate is close to the longitudinal damping. Another
decisive observation was the time variation of the
amplitude of the synchrotron frequency, measured with the
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tune measurement pickups. Compared to the former, the
amplitude which emerges synchronously with the LFO
decays much faster in time.

These observations lead us to interpret the LFOs to be
a coherent synchrotron motion excited by LMBIs growing
rapidly until the amplitude reaches a nonlinear region
where the motion is Landau damped. The blown up beam
will then be subject to radiation damping until it recovers
the coherence again. In the literature, we find similar
observations to exist in other machines as well [3,4]. In
Ref. 3, in particular, where  detailed measurements and
analysis are made, the author describes it as a coherent
synchrotron relaxation oscillation.

Since all ingredients which appear in the model derived
above are basically known, we shall attempt to develop
further the model quantitatively to justify the picture
itself, and then to seek for the reproducibility of the
observations, also trying to understand what are the
essential features.

 2.  THE DEVELOPED MODEL
As the difference in time scale of individual processes

is expected to be critically important in understanding the
evolution of a system which particularly is supposed to
involve a loss of coherence, it appears suitable to perform
a multi particle tracking to study the system. We therefore
develop a longitudinal tracking which includes the effects
of the nonlinear RF field, radiation damping and a
collective wake force. A quantity of interest is the phase
space amplitude averaged over the particles, F ≡ <x2 +
(α c/ωs

.ε)2>1/2, which would correspond to the voltage
seen by the BPM. Here, (x, ε) denote time and energy
coordinates, αc the momentum compaction, and ωs is the
angular synchrotron frequency.

Instead of treating the wake force rigorously in terms
of a wake function and a time dependent distribution, we
take for simplicity a semi phenomenological approach to
include this effect in parallel with radiation damping via
grow rate 1/τu calculated from the formulae. The relation
assumed in the tracking of a single particle thus reads

εnew  =  εold  +  
Vrf

E0
  . [sin(ωrfxold + φ0) - sinφ0]

-  De
.εold  +  Du

.εCM, (1)

xnew  =  xold  +  T0α c
.εnew, (2)

where the meaning of symbols are as follows;
Vrf: RF voltage, ωrf: Angular RF frequency,

φ0: Synchronous angle, E0: Beam energy,
T0: Revolution period.



De is related to radiation damping rate 1/τe by De =
2(1/τe)T0, and Du likewise to 1/τu. It is noted that,
reflecting a mean field, the term with Du is multiplied by
the centre of mass coordinate εCM. The effect of potential
well distortion as well as coherent tune shift are regarded
irrelevant and not considered. In most cases, 500 particles
were tracked over 200 msec, which requires nearly 10
minutes of cpu time. Results are confirmed to depend
little on the number of particles.

0

600

1200

1800

2400

3000

0

G
au

ss
ia

n 
[1

/s
ec

] F
itted

 [1/sec]

200

400

600

800

1000

0 20 40 60 80 100
sigmaL [mm]

Ib  = 30 mA at 1.1 GeV

Vrf = 1.7 MV
HOM:  First Longitudinal Mode

Gaussian

Fitted

Fig. 2. Growth rate 1/τu versus longitudinal beam size σL.

We initiated our study from using 1/τu calculated from
the standard formula derived for a Gaussian beam, with
impedance values of the first longitudinal mode which is
identified to excite the LFOs (Fig. 2) [1]; Shunt
impedance R = 1600 kΩ , quality factor Q = 45000 and
the beam harmonic = 821. Tracking was performed
starting from the nominal Gaussian beam. We basically
find that the assumed growth rate, with the nonlinearity of
the ordinary RF field, does lead to a loss of coherence,
namely to a filamentation, around an amplitude in phase
space which is in a reasonable range as compared to the
measurements. However, after the initial blow up, the
system only reaches an equilibrium, as typically shown in
Fig. 3. Note that the beam size σL is evaluated at each
instant with
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Fig. 3. Average amplitude F obtained from the tracking with
1/τu calculated assuming a Gaussian distribution.

which 1/τu is computed. The result signifies that the
reduction in the wake force due to lowering of the growth
rate 1/τu for larger σL (cf. Fig. 2), together with
decreasing magnitude of εCM due to the loss of coherence,
are not adequate to explain the saw tooth mechanism (see
Eq. 1).

In fact, the observations (Fig. 1) indicate that after the
filamentation, the beam is subject to damping over a
major part of an oscillation period, which implies that the
wake force during this interval is actually vanishing. In
terms of growth rate, this means that its decay as a
function of σL, the "effective" beam size of a filamented
beam, should be much faster than what is given by the
Gaussian formula, suggesting that 1/τu needs to be re-
evaluated for the completely different beam distribution.

Here we refer to the work of Ref. 5 where analytical
expressions for the complex coherent frequency shifts are
derived by solving the Sacherer's equation for extreme
beam models; a water bag, in the longitudinal, and a
hollow bunch in the transverse motions. The multi-turn
sums are in particular rigorously evaluated. We apply the
developed technique to obtain the growth rate for a hollow
bunch in the longitudinal motion. We should stress that
the use of a hollow bunch is not for the sake of
mathematical simplification, but rather as an
approximation of the supposed distribution. Below we
merely give the final result for 1/τu obtained for the
dipole mode. More details will be found elsewhere [6];

1/τu  =  -π 
κ
Σ   

Nαce2

νsT0
2E0

  . 
α κRκ

ωrκ
  (1 - aκ

2) 

× J1(ρωrκ/ω0) . [2J1(ρωrκ/ω0)  -  ρωrκ/ω0 J0(ρωrκ/ω0)]
/ρ2

× [ 
1

1+aκ
2-2aκcosφ1κ

   -  
1

1+aκ
2-2aκcosφ2κ

  ], (3)

where ρ denotes the radial amplitude of the distribution, κ
distinguishes the HOMs, and Jn (n = 0,1) are the Bessel
functions. Other symbols signify as follows [5];
N: Number of particles in a bunch,
ω0: 2π/T0, νs: ωs/ω0,

ωκ: Angular eigenfrequency, ακ: ωκ/2Qκ,

ωrκ: ωκ[1 - 1/(4Qκ
2)]1/2, aκ: exp(-ακT0/M),

φ1κ: T0/M.(ωrκ -  ωs -  µω0), φ2κ: T0/M.(ωrκ + ωs + µω0),

M: Number of bunches, µ: Coupled bunch number.
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Fig. 4. Growth rate 1/τu versus radial amplitude ρ of a hollow
bunch (Eq. 3), calculated under same conditions as in Fig. 2.

It turns out that due to the property 2J1(x) ~ xJ0(x) for x
<< 1, there is a large cancellation in the form factor part
of 1/τu in Eq. 3, as a result of which, the growth rate is
nearly vanishing in the range of interest. It is also
noteworthy that 1/τu deviates in the negative direction
creating a damping effect at larger amplitudes.



3. DISCUSSIONS
As the vanishing of the growth rate 1/τu for a

filamented beam may be justified as above, we searched
empirically for 1/τu which would reproduce the
observation in Fig. 1, tentatively in the Gaussian form.
The optimal 1/τu which reproduces the LFO to the extent
as shown in Fig. 5a, is compared with that of the
Gaussian beam in Fig. 2. The magnitude of the fitted 1/τu

at origin is considerably smaller and tends to zero before
σL reaches 10 mm. The effective growth rate on the
calculated amplitude in Fig. 5a, however, is in a good
agreement with the observation in Fig. 1.
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Fig. 5. Calculated (a) average amplitude F, and (b) centre of
mass amplitude versus time, obtained with the vanishing
1/τu (Fig. 2).

Regarding the measured data, damping tends to be
stronger than what expected by typically 50% or even
higher for larger amplitudes. The reason is not clear
whether it is related to the additional damping effect found
above. A better agreement is actually found by increasing
the damping rate in the simulation. The shown example
in Fig. 5 assumes 50% increase, as well as the additional
damping given by Eq. 3 which however is only
influential at large amplitudes. The calculated centre of
mass amplitude (Fig. 5b) shows expected behaviour
which resembles the observed variation of the amplitude
of synchrotron frequency in time. The corresponding beam
distributions in phase space are shown for several
representative instants in Fig. 6. As the filamented beam
feels no wake force, it damps sufficiently down to the
origin. Once the beam begins to feel the wake force, it
oscillates coherently moving its centre outwards until the
increasing nonlinearity together with sufficient revolution
in phase space brings the beam to be filamented. On the
synchrotron radiation profile monitor, two dense spots

Fig. 6. Calculated phase space beam distributions at various
instants in the above tracking (Fig. 5).

may be detected under these circumstances. Thus, it can be
said to be the combination of filamentation at large
amplitudes and the vanishing of the wake force after
filamentation which renders the process irreversible,
producing the saw tooth mechanism.

Irregularity of the oscillation is noticed in Figs. 5
where the amplitude grows larger when the preceding
damping proceeds to a better degree. Such a trend is
observed in reality as well. In fact, as also pointed out in
Ref. 3, depending upon a delicate balance among the
involved parameters such as cavity temperatures, beam
current, energy and the rf voltage, the beam exposes a
wide variety of phenomena, including a steady state as
shown in Fig. 3. In particular, it may be understood that
LFOs are more likely to occur at low energies due to
higher growth rate and weaker radiation damping, the
latter of which promotes the filamentation. A more
detailed analysis on the dependence of the phenomena on
different parameters will be found elsewhere [6].
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