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Abstract P!%(t) are matrices containing Taylor expansion coeffi-

This paper! presents a method of obtaining of explicitc'ents' The solution of the Eq.(2) can be written in the form

forms for Lie transformations which are widely used in par- -

ticle physics problems. This approach is based on the ma- X(t) = X (Xo; t|to) = Z Mlk(t|t0)X(gk]’ ©)
trix formalism for Lie algebraic tools. All calculations are o

realized in symbolic form with the help of computer alge-

bra codesREDUCEor MAPLEcodes). The closed form of whereX, = X (t,) is an initial phase vector ard ¥ (¢|t)

Lie transformations takes into account the intrinsic propety;e solution matrices. In the previous papers (f.e. see

ties of the Lie transformations, for example, the property o[fz 3, 4, 5]) basic features of this approach were demon-

symplecticity for Hamiltonian systems. The module whichi aied and different examples of applications were de-

creates these closed forms for nonlinear systems is oneéQined. According to this approach for calculation the ma-

parts of a protype of an expert system which is created f@fices M'* we use the matrix formalism for Lie algebraic
beam line systems simulating. methods. Following to these tools we use Lie maps repre-
sentation for solution of the Eqgs.(1)-(2):

1 BASIC DEFINITIONS AND

EQUATIONS X (t) = M(t|to) o Xo = Texp {Lr} o Xy, (4)
1.1 Introduction where L is a Lie operator associated with the function
Beam line systems are usually described by nonlinear mé* (L = F*(Xo,t)0/0Xo), Texp is the so called T-
tion equations. The corresponding maps — Lie transformaxponential operator (time ordered exponential operator).
tions — can be calculated with the help of so called Lie alFor non-autonomous cases this operator can be rewritten
gebraic tools (for Hamiltonian systems see [1]). Usuallwith the help of the Magnus’s representation [6] in the form
Taylor expansions of these maps are used. However in tloéroutine exponential operator
case we encounter with two problems. One is the loss of
calculation accuracy ar_wd the other is the quality properties Texp{Lr} = exp {/:‘(F; t|t0)} ' (5)
loss. The purpose of this paper is to present a new approach
to evaluation of explicit forms for Lie transformations. This A
approach has the advantage that it is based on linear algelbhee new operatol’ is associated with a new function

algorithms, which are very well developed. F(F;t|to) which one can calculated using the continuous
analogue of the CBH formula. The expansion (2) gener-
1.2 The matrix formalism ates Taylor expansions of Lie operatdls = 3, L,
Further we will consider differential equations of motion indNdLr = 3 450 L, - Herek, and ), are homogeneous
the general form vector polynomial functions, f.eF;, = P, X*. The se-
dx quences of ;. } and {Fk} are defined by the following
— =F(X 1 . ~ .
dt (X, 8), @ matricesP1* () andP*(t|t,). Rewrite the Eqgs.(4)-(5) us-

where the functio (X, t) can be represented as a Tayloind the analogue of the Dragt-Finn factorization in the form
expansion and we can write

00 M(tlty) = ...exp{ljg} o exp {/jg} o exp {/jl} (6)

dX )
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. - _ where £, = (G'x*)"9/dX. For new matrices
Here X! = X ®...® X is the so called Kronecker le(F;t|t0) were obtained the rather simple formulas us-
k—times ing the Kronecker product and sum representations. Inter-

power ofk-order for a phase vectaX = {zi,...,2,}, acting by the factorized maps (6) dt, we evaluate the

h . n ; .
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2 THE EXPLICIT SOLUTIONS 3 ORGANIZATION OF CALCULATIONS

2.1 The general features 3.1 The general case

It is known that the approach mentioned above is one &following to the approach described in the referred pa-
the perturbation theory methods. The desired solution ers the calculation procedures is realized using some data-
created in the form of power series (see the Eq.(1)). It isases of corresponding matrices and formulas for abstract
clear that way can be realized only with truncated procéhoncommutative) variables [8]. The prepared formulas
dures for some chosen order of expansions. In the referrate used for necessary calculations for obtaining of explicit
works the corresponding matricBs*, P* G!* andM!*  forms of solutions in the following ways: at first we impose
are calculated up to fifth order in symbolic forms using theome conditions o'* matrices included to the series in
computer algebra codeRE DU C'E for example). Butwe the Eq.(2). Then according to the matrix formalism we use
have to note that for this approach there appear two prohecessary formulas for the solution matrid4$’ and solve
lems: support of accuracy of truncated expansiandsup- the Egs.(8). The block structure of matrid@s® andM '/

port of intrinsic properties (f.e. symplecticity for Hamilto- correspondingly helps to do all calculations more comfort-
nian systems)The second problem can be solved with theble.

help of the correction procedure [7] for the matridéd*”.

For this correction we have to solve a chain of linear al3.2 Some simple examples

gebraic equations and redefined some of the elements of . _ _ :

M. These calculations one can make in symbolic form’%‘: first let give as an example the matrix representation for
too. But for many applications (f.e. for long time track—t
ing) it is very important to have solutions in explicit forms.
These explicit forms can be used in two ways: for more exp{Lq, }oX =
accurate tracking of particles beams and for checking of
approximate calculations.

e Lie transformation associated with homogeneous poly-
nomialsG,,, = G, X"

ok Go(i—D(m-1)+1)
2.2 The solution method _,;0]1;[0 !

For the creation of explicit forms for Lie transformatlonsHere G®* denotes thek-multiple Kronecker sum. In

M we use the matrix representation (3). At first we repre- S
sent the designed solutiofi( Xo; ¢|to) in the form works [9, 10] some approach to the problems of explicit so

lutions for Hamiltonian systems is discussed. In this paper
W (Xo; t|to) we suggest an alternative method which is usefulness for
m, (7) more general dynamlcs syste_;ms. Besides, we can use for
solving corresponding equations computer algebra meth-
where W (Xo; t|to) and v(Xo;t|ty) 0ds and codes. Also we can create some specialized data—

are analytical functiondl’ = 3", Wk (t|to) X ¥ and Pases which can help to generate necessary explicit solu-
* N tions more flexible and effective. Consider a homogeneous
v =302, (VH(tlt))" X5, whereW'k, V1 are ma- g

. 0 . olynomial of second orde®,(X) = G, X! for simple
trices and vectors of coefficients which must be calculate y _ 2(X) 2 P

. . . ase ofn = 2, where
Using the representation (3) and (7) we can write

_fa 0 O
- 1\* vl - 1k vk ) _ - 15 v [4] G. = (b —2a 0) ’
Z (V ) XO ' ZM Xo = ZW XO .

1=0 k=0 i=0 where ¢ and b are arbitrary constants. We pro-

x [k(m—1)+1] (9)

X(Xo, t|t0) =

se that the desired solution has the following form
o W““XU“] /3o (V”)f= X, Solving the Eq.(7)
we obtain the following solution matricd% ™ and vectors
Vikforl =0...4,k=0...1

[e's} l [e's}
}: }: * - [l]_E:VV' 4]
= <ko e k) HE LW @ Wit =0, Wl =,

This expression can be rewritten using the Kronecker pro&f
uct properties in the form

In the Eq.(8) the matricesI!/ have to be defined or calcu- W** = (_Ob 30a 8) , W = (_Ob 30a 8 g) ,
lated from the initial motion equations (see the Egs.(1)-(2)).
Obviously that the system of linear algebraic equations (8)

does not define unknown matrices and vectf$* and W = < 0 0 00 0) , (10)
V17 in a full measure. We have an arbitrariness which can —b 32 0 00

be removed by superposition of additional conditions. As

such conditions the symmetries conditions on the initial dy- VIO —g pl—g. 1 (11)
namic system can be suggested. - - 0



It is not difficult to see that the corresponding expression9] Jicong Shi, Yiton T.YanExplicity Integrable Polyno-
forexp {Lq, } o X (with regard to the Egs. (3),(4),(7),(10) mial Hamiltonians and Evalution of Lie Transformations
and (11) ) is the same as expressions in [10] (up to nota- Phys.Rev.E48, No 5, 1993, pp.3943-3951.
tions) for a Hamiltonian system with a cubic term in thg10] Jicong Shi, Yiton T.Yarintegrable Polynomial Factoriza-
form Hz; = —bx3/3 + ax?p, wherez, p are components tion of Symplectic SystemBhys.Rev.E50, No 1, 1994,
of the phase vector for = 2. A similar expression (up to pp.532-538.
permutation of lines in the matricd'* and vectord/ !
and changing the constantto a new constant) can be
obtained for a polynomids = —axp? + cp?/3.
In conclusion | would like to point some moments. In
the first place, the suggested method is based on the unique
mathematical tools which are used in the frame of the ma-
trix formalism. Secondly, this approach allows data-bases
of necessary matrices to be created for advance. And fi-
nally, it is possible to use computer algebra methods and
codes for all necessary calculations. Ultimately this pro-
vides a possibility of creation of a prototype of expert sys-
tems for particle beam lines modelling and optimization.
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