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Abstract

We study symplectic mappings which occur in the mod-
elization of the 4D betatronic motion in a magnetic lat-
tice and define the dynamic aperture in terms of the con-
nected volume in phase space of initial conditions which are
bounded for a given number of iterations. Different meth-
ods for a fast estimate of the dynamic aperture are outlined;
the analysis of the associated errors and the optimization of
the integration steps are also reviewed. The accuracy of the
different approaches have been tested by mean of numerical
simulations. Both simple models and more realistic lattices
have been considered.

1 INTRODUCTION

The presence of nonlinearities in the magnetic field of the
elements of an accelerator can greatly reduce the stability
domain [1, 2, 3]. An accurate estimate of the dimension of
this domain is crucial both for the understanding of the dy-
namics of existing machines [3] and for the specification of
the lattice parameters of planned machines [4].
The numerical estimate of the dynamic aperture is related to
the computation of the volume in phase space of the initial
conditions that are stable after a given number of revolutions
around the machine. The numerical evaluation of this vol-
ume is very CPU time consuming, as in principle one should
scan the four variables (x; px; y; py).
To overcome these problems for complicated lattices, the
tracking is carried out over initial conditions with px =
py = 0 and a fixed ratio x=y with a large gain in the CPU
time [2, 3]. Unfortunately, this approach does not take into
account two main effects, i.e. the distortion of the orbits
along the phases [5] and the different dynamics of the par-
ticles with various ratios x=y [1, 3, 6]. Neglecting these ef-
fects, the computed dynamic aperture will be affected by er-
rors that cannot be estimated a priori.
We present here some original numerical methods [7]: to
evaluate the dynamic aperture taking into account the phase
space distortions. We prove that it is possible to exploit
the dynamics to take into account the distortion of the or-
bits along the phases, thus avoiding the integration over
these variables. We develop two algorithms to carry out
these fast estimates: one is based on numerical integra-
tion [8], the second exploits the perturbative tools of normal
forms [9, 10, 11].
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2 DYNAMIC APERTURE DEFINITION

Let x = (x; px; y; py) be the vector of the Courant-Snyder
coordinates at a given section of the machine. The linear
motion is the direct product of two constant rotations in the
planes (x; px) and (y; py) by the linear tunes. Let us con-
sider the phase space volume of the initial conditions that
are bounded after N iterations:

Z Z Z Z
�(x; px; y; py) dx dpx dy dpy; (1)

where �(x; px; y; py) is the characteristic function of the set
of initial conditions that are bounded under N iterations.
Since in 4D the invariant curves (i.e. 2D KAM tori) do not
separate different domains of phase space, there does not
exist a last invariant curve surrounding stable initial con-
ditions [12, 11]. However, it seems from numerical simu-
lations [2, 3, 6, 13, 14] that pathological situations are not
typical of weakly nonlinear lattices and they have no prac-
tical relevance, since they occupy a negligible fraction of
the phase space volume. Therefore, in general, there exists
a connected region of initial conditions that are stable for a
given number of iterations.

3 METHODS TO COMPUTE THE 4D
DYNAMIC APERTURE

3.1 Method 1: direct integration.

To exclude the disconnected part of the stability domain in
the integral (1), we have to choose a suitable coordinate
transformation. The natural choice is to use polar variables
(r1; #1; r2; #2); r1 and r2 are the linear invariants. As the
nonlinear part of the equations of motion adds a coupling be-
tween the two planes, it is natural to replace r1 and r2 with
the polar variables r cos� and r sin�:
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>>:

x = r cos� cos #1
px = r cos� sin#1 r 2 [0;+1[
y = r sin� cos #2 #1; #2 2 [0; 2�[
py = r sin� sin#2 � 2 [0; �=2];

Having fixed�, #1 and #2, let r(�; #1; #2) be the first value
of r whose orbit is not bounded afterN iterations. Then, we
define the dynamic aperture as the radius r�;#1;#2 of the hy-
persphere that has the same volume as the stability domain.
To evaluate numerically this quantity, one considers J steps
in the radial variable, K steps in the angle � and L steps in



the angles #1, #2: the dynamic aperture then reads [7].

r
4

�;#1;#2
=

�

2KL2

KX
k=1

LX
l1;l2=1

[r(�k; #1l1; #2l2)]
4 sin(2�k)

Error sources. The discretization both in the angular and in
the radial variables leads to an integration error, which can
be estimated using the standard tools of numerical analysis.

� The discretization in the angles#1 and #2 corresponds
to a trapezoidal rule of integration [15]. In the follow-
ings we will always assume that the more pessimistic
estimate L�1 holds.

� The discretization in the angle � gives a relative error
proportional to K�1.

� The discretization in the radius r gives a relative error
proportional to J�1.

Step optimization. One should choose integration steps that
produce comparable errors, i.e. J / K / L. In this way,
neglecting the constant factors, one can obtain a relative er-
ror of1=(4J) by evaluatingJ4 orbits, i.e. NJ

4 iterates. The
fourth power comes from the dimensionalityof phase space,
and makes a precise estimate of the dynamic aperture very
CPU time consuming.

3.2 Method 2: integration over the dynamics.

The direct integration method, contains the average of
r(�; #1; #2)4 over the angles. It is possible to replace such
an average with an average over the iterates. To avoid
the effects of the non-uniformity of the distribution of the
phases on the last invariant curve, one can proceed in the
following way [8]

� We fix #1 and #2. A scan over � is performed to find
the radius r(�; #1; #2) defined in the previous section
and at the same time theN iterates of the orbit are com-
puted.

� The square [0; 2�[�[0; 2�[ is divided in M
2 equal

squares (with M2 � N ), such that each square con-
tains at least the phase of one iterate of the last stable
curve.

� For each square (m1;m2), where m1 = 1; :::;M and
m2 = 1; :::;M , we compute rm1;m2

(�; #1; #2), that
is the average distance to the origin of the iterates that
fall in that angular square.

Finally, the dynamic aperture is computed as

r
4

�;d =
�

2KM2

KX
k=1

MX
m1;m2=1

[rm1;m2
(�k; #1; #2)]

4 sin(2�k):

Error sources. The error is given by the following contribu-
tions.

� The discretization in the angles #1, #2, which is given
by the M2 squares over which the integration is car-
ried out. The relative error in the dynamic aperture is
proportional to M�1 / N

�1=2.

� Discretization in the angle �: the relative error is pro-
portional to K�1.

� Discretization in the radius r: the relative error is pro-
portional to J�1.

Step optimization. One should choose J / K /
p
M . Ne-

glecting the multiplicative constants, one obtains a relative
error of 1=(4J) evaluating J2 orbits, i.e. J2M2 / J

2
N

iterates, thus saving a factor J2 with respect to Method 1.

3.3 Method 3: normal forms.

According to the nonresonant normal form theory, using a
conjugating function� one transforms a 4D map F into its
normal formU [10, 11], namely a direct product of rotations
in the two phase planes (x; px) and (y; py), whose nonlinear
frequencies depend on the distance to the origin. The two
components of the inverse conjugating function	1 and 	2

give the approximated nonlinear invariants �1 and �2.
Thanks to the properties of the normal forms, the nonlin-
ear invariants �1; �2 will be independent on the values of
#1; #2 and the integration over the phases can be trivially
computed. The first order result will be

r
4

�;nf =
�

2K

KX
k=1

[�1;k+�2;k]
2 sin(2�k) �i;k = �i(�k; #1; #2):

Error sources. The error is given by the following contribu-
tions.

� Discretization in the angle �: the relative error is pro-
portional to K�1.

� Discretization in the radius r: the relative error is pro-
portional to J�1.

� Normal form error. The application of normal forms
close to the dynamic aperture can give inaccurate re-
sults [11]. This error is due to the divergence of the
perturbative series and to the truncation of the series.
In the numerical examples analyzed in this paper, the
linear frequencies are far from low order resonances
and the normal forms turn out to be very accurate.

Step optimization. One should choose J / K. Neglecting
the multiplicative constants and assuming that the normal
form error is smaller than the integration error over r and
�, one obtains a relative error of 1=(4J) by evaluating J2

orbits, i.e. J2N iterates: one saves a factor J2 with respect
to Method 1 (without constraints over the number of iterates
such as in Method 2).



Table 1: Dynamic aperture estimates for LHC and SPS.

Model Average Relative Error w.r.t. r�;�1;�2

r0 r�;d r�;nf

LHC - Sex. only 16% 2% 3%
LHC - All mult. 9% 1.5% 2%

SPS - WP1 13% 9% 8%
SPS - WP2 37% 5% 6%

4 NUMERICAL RESULTS

LHC cell lattice with random errors We consider a lattice
made up of 8 LHC–like cells [4] plus a phase shifter to set
the linear tunes to the values �x = 0:28, �y = 0:31. Two
different sets of nonlinearities have been considered: a lat-
tice with only random sextupolar components in the dipoles,
and a lattice with random sextupolar, octupolar and decap-
olar components in the dipoles. The estimated values of the
LHC dipole errors have been used. For each case we anal-
ysed 10 different seeds. In Tab. 1 we report the relative er-
rors between Methods 2, 3, and Method 1. We also give
the position r0 of the last invariant curve along the direc-
tion � = �=4 and #1 = #2 = 0; this indicator is commonly
used for fast dynamic aperture estimates of complicated lat-
tices [2, 3].
We computed the dynamic aperture over N = 1000 turns
using 20 steps for each variable, giving an accuracy of 2%.
For the Methods 2, 3 the number of steps in � and in r is
20; r�;d is computed over 1000 iterates. The normal form
truncation is fixed between 3 and 8, choosing the order that
minimizes the normal form error. The results show that both
r�;d and r�;nf provide an estimate of the dynamic aperture
which is in agreement with the direct integration of the sta-
bility domain, without scanning over the two angles #1 and
#2. The estimate r0 neglects both the distortion of the orbit
and the contributions coming from particles with different
emittances: as these phenomena are relevant, this estimate
is rather imprecise.
SPS lattice We also consider the SPS lattice corresponding
to the set–up used for nonlinear dynamics experiments [16].
The nonlinear part of the lattice consists of 8 strong extrac-
tion sextupoles plus 108 chromatic sextupoles. Two work-
ing pointshave been considered: the first one (WP1) at �x =
26:637 and �y = 26:533, which is close to resonances of
order 7 and 8; the second one (WP2) is �x = 26:605 and
�y = 26:538, which is close to resonances of order 5. Both
cases correspond to very perturbed situations where the non-
linear resonances are excited and the phase space is strongly
deformed.
In Tab. 1 the different estimates of the dynamic aperture r0,
r�;d and r�;nf are compared to the estimate r�;#1;#2 com-
puted with 20 steps in each variable. The results show that,
due to the high distortion in phase space, the estimate r0 is
really imprecise. On the other hand, Methods 2 and 3 pro-
vide a better estimate, even if the errors are considerably
higher than in the other cases; this is probably due to the
strong nonlinearities of these models.

5 CONCLUDING REMARKS

In this paper we have presented three methods to compute
the dynamic aperture and to estimate the associated errors.
The optimization of the integration steps have been dis-
cussed as well.
Method 2 and 3 have given good results showing that the de-
pendence on the phases and on the ratio of emittances can
be crucial for obtaining a precise estimate of the dynamic
aperture for realistic models.
As these numerical results are strongly model–dependent,
we believe that for each model one should carefully test the
relevance of these effects to choose the best compromise be-
tween accuracy and CPU time.
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1993) pp. 264–268.

[3] F. Zimmermann, in Fourth European Particle Accelerator
Conference , edited by V. Sueller et al. (World Scientific,
Singapore, 1995) pp. 327–331.

[4] The LHC study group, CERN 91–03 (1991).

[5] N. Merminga, in IEEE Conference series, edited by F. Ben-
nett and J. Kopta (IEEE, New York, 1990) pp. 1286–1288.

[6] F. Galluccio and W. Scandale, CERN SL (AP) 89–51 (1989).

[7] E. Todesco and M. Giovannozzi, Phys. Rev. E 53, 4067–
4076 (1996).

[8] R. Brinkmann and F. Willeke, DESY 86–079 (1986).

[9] A. Bazzani, P. Mazzanti, G. Servizi and G. Turchetti, Nuovo
Cim., B 102, 51–80 (1988).

[10] E. Forest, M. Berz and J. Irwin, Part. Accel. 24, 91–113
(1989).

[11] A. Bazzani, E. Todesco, G. Turchetti and G. Servizi, CERN
94–02 (1994).

[12] J. D. Meiss, Rev. Mod. Phys. 64, 795–848 (1992).

[13] M. Giovannozzi, R. Grassi, W. Scandale and E. Todesco,
Phys. Rev. E 52, 3093–3101 (1995).

[14] F. Galluccio and F. Schmidt, in Third European Parti-
cle Accelerator Conference, edited by H. Henke (Edition
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