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Abstract

A reativistic Hamiltonian is taken as starting point for an-
alytical calculations of the particle motion in a low energy
electron linear accelerator. In this Hamiltonian the e ectro-
magnetic space waves are represented as vector potentials.
Also alongitudina focusing magnetic field isincorporated
by means of itsvector potentia. For an adequate represen-
tation of thelatter, one has to use cartesian coordinates. Af-
ter afew canonicd transformations a final Hamiltonian is
obtained that givesinsight in several physical phenomena
related to the particle motion. The effect of the energy in-
crease along the accelerator on the transverse focusing is
taken into account. The resultsare correct up to second or-
der in the amplitudes of the waves.

1 INTRODUCTION

The orbit dynamicsin electron linear accelerators are rather
complicated due to a series of electromagnetic (EM) waves
with different propagation constants. Asidethe accelerating
wave the harmonic spatial waves following Floquet’ stheo-
rem, do occur. Further thereisalargeincrease of energy per
period. Severa focusing effects are generally treated sep-
arately, eg. phase focusing, ponderomotive focusing and
magnetic focusing [1] [2] [3] [4]. Many of these effects are
rather similar tothose present in A.V.F. cyclotronsand A.G.
synchrotrons, for which analytical theories using Hamilton
mechanics yield reliable results[5].

Often the description of the particle motion is given in
cylindrical coordinates resulting in a problem for the de-
scription of particlesin linacs with non zero azimutha mo-
mentum.

In thispaper the EM fields are represented by their mag-
netic vector potentias, the applied coordinate system is
cartesian with the z-axis pointing along the optical axis.
After a number of successive canonica transformations
a Hamiltonian is constructed with slowly varying coeffi-
cients. Then an adiabatical treatment can be carried out.
This contribution deals with linear motion. However, the
theory is sufficiently genera to be further developed for
non linear motion, including coupling effects.

2 THE ELECTROMAGNETIC VECTOR
POTENTIAL

The componentsof thevector potentia representing the EM
waves in polar coordinates are given by

A, = _TlEnJO(anr)sin(knz—wt)

(1)
A, = %"Enit]l(anr) cos(knz — wt)

Here J, and J; are modified Bessd functions, «,, isthe n-
th zero of Jy, E,, isthe eectric field amplitude of the n-th
mode, k, = ks + 22, a2 = k2 — k?, k isthe propaga-
tion constant in vacuum, k is the propagation constant of
the accelerating EM wave which istaken constant. For the
linear theory Jo = 1+ 10272, J1 = four. Incartesian
coordinates the representation is

A, = _TlEnJO (anr) sin(k,z — wt)
A, = BB 2cos(knz —wt) — $B(2)y )
A, = LB ycos(knz — wt) + 1B(2)z,

where B(z) represents an added z-dependent solenoida
magnetic field.

3 THE BASIC HAMILTONIAN
The relativistic motion is described by the Hamiltonian

H= {Eé + (pe — eAy)%c?
2.2 2 2 1/2 ©)
+(py — €Ay’ + (p. — eA,)*e?} 7,

with p., p, the transversal and p.. the longitudinal compo-
nents of the canonical momentum, E'r therest mass energy
and ¢ the speed of light. It is convenient to switch over to
a new Hamiltonian K = —p,. Then the z-coordinate is
the new independent variable, p = —H and ¢ form a pair
of new conjugated canonical variables. By this manipula
tion trajectories, particle energy and phase are described as
a function of position along the optical axis. Relative mo-
menta, relativefield quantitiesand anew coordinate { = ct
are introduced:

— _DP=x — _DP=x _ —H
Ty = WU/C ) 7Ty— Wg/c ) h_ Wo (4)
_ eEy eB(z)c Er
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with W, aconstant reference energy. A transformation of ¢
is carried out by the generating function Gj:

Go(my, T, wy,y,h,g,z) =—h( - zh% — T — TyY
(=T

7 9Go __

h=— FZQ_h

K=K+%%—K-ht=K-hi.

()

After thistransformation the Hamiltonian becomes

K = —{h?—¢e*—
(T2 — lgnknx Cos(%T"z — _) 1bky)
(my — $Enkny cos(ZEnz — £5) — Lpkg)?}1/2

C
— EnJo(anr) sin(2rz — “’TZ) — hka.
(6)
This Hamiltonian looks rather complex, but after two suc-
cessive transformationsit becomes a clear presentation.

4 PHASE FOCUSING AND MAGNETIC
FOCUSING

Two successive transformations are applied. The first one
transformsthe canonical momentar, and 7, into new ones
that equal the kinetic momenta. The second one introduces
atransformation to a coordinate system rotating around the
z-axiswith half the cyclotron frequency.

Transformation |

Gl(ﬂ-&ﬁ;E; Wy;y; h7z7 Z) = _h’E — TyT — Wyy
— o)

1 =2 2mn
+3EnknT* cos(F5 2 p
wCo

20,

+3Enkny” cos(22z — -

Ty = —33%1 =Ty — 2EnknT cos(2Zz — “’TC“)

G — o . _
r=—5-=71, similar egs. for 7, and y.
K=K+ %2

The phase %E may be seen as a small quantity giving rise
to couplingin non linear terms. Thisistaken as a constant,
%C_o- inthe derivation of thetransversal part of the Hamilto-
nian. Oneobservesthat thevector potential isremoved from
the canonical momentar,,, 7. It returns asa potential-like

function via &+
z

Transformation |l Thistransformationis applied after ex-
panding the squareroot in eg. 6.

G2(fx;$7fyyyyﬁ7 C) = EC

+T4% COS P + Ty sin ¢ — Tyx sin ¢ + T,y cos @,

—_ 8G,
T = o7
Ye.
Ty = 3x2
K=K+ %

and ¢ = — [ 3%%dz.
(8)

The resulting Hamiltonian for only the main wave &, be-
comes

Ko = —(W =)V - Esin(2e) — it
+l\’}hj%82
~ba {380 sk, — k) sin(%(8) — )
bR (3olkshy — K)sin( %) — 1),

(9)
the subscript p refers to the particle. After atransformation
has been carried out bars are removed. Thisis only conve-
nient if the meaning of avariableis not changed too much.
In the transversal part of the Hamiltonian the synchronous
solution of the longitudinal motion is substituted (ho, ().
Taking the synchronous phase asasmall quantity of first or-
der it appears that the complete focusing in eq. 9 is of sec-
ond order: & sin(w(y/c), b%. Infact the phase focusing be-
comes much smaller towards higher energies.

5 FOCUSING DUE TO OSCILLATING
TERMS

Rapidly oscillating terms of first order yield second order
“congtant” terms after their removal by a suitable canoni-
cal transformation, giving the ponderomotiveaction. These
terms occur inthelongitudinal solutionfor the synchronous
particle, in the potential function generated by G; and are
due to the transformation from H to K.

One has
AKy = 2(2? + y?)E, 2 sin(2222), (10)
ho = EoZEz + -%E, sin(2E2) — wy,

w; represents theinitial energy, itssign arises from the fact
that the momentum h has anegative sign with respect to H.
Thefirst term on the right-hand side of the second equation
represents the steady increase of energy.



All first order oscillating terms can be transformed away
by athird transformation

G3(7e, T, my, T, by C) = —hC — am,T — amyy + b(@* + 77
2 1

= _ 3G
Te =55
__9G
r = _3_71':_’
(11)
The final Hamiltonian becomes

K = (h? - e2)1/2 — g sin(<X) — hkt
+572 + sl

&g

+3@? +92){-3 (kskp — k?) sin(50)

27,2 2
Tt i (160 + §(En +E-0)%)),

(12)
where for simplicity in the derivation of the last focusing
term hgh—_gez is approximated by unity. The oscillating part
in hy now has been removed. All field quantitiesin the fo-
cusing terms are now roughly divided by the energy |ho|.
Thevariation of thefocusingtermisslow and can betreated
adiabaticaly. In standing wave structures, e.g. aIl-mode
structure, £_1 equals &y. For other modes one has to repeat
carefully the transformation G's.

6 REMARKS

The final Hamiltonian K is a good representation from
which the particle motion can be derived. The coefficients
for thetransversal motion are accurate up to second order in
thewave amplitudes. However, in deriving the ponderomo-
tiveactiontheapproximation3 >> e* hasbeen used. Tak-

2

ingtheconstants k; and k,, equal onegetsk? —k* = 358_7
For high energies this quantity can be seen as a quantity of
at least order one. Therefore the phase focusing becomes of
minor importance compared to both other terms. For low
energies compared to the rest mass energy (hZ — €2)/e?
may be taken as a quantity of order one. Then the phase
focusing and the magnetic focusing become important. The
transformation G5 can be performed again showing thefirst
order phase focusing and the second order ponderomotive
focusing that occur in a cavity when the energy increase
is small compared to the kinetic energy of a particle. For
(h3 — €%)/e? ~ 1 thetransformation G5 becomes more
complex and must be followed by afourth transformation.

If the wave propagation factor is depending on the axial
position z, the arguments of the cos / sin-functionsmust be
changed into ([ k(z)dz — wt). Solving the wave equation
showsthat at the same timetheamplitudeof theelectricfield
strength changeswith z : E ~ 1/4/k(z) . Inthe Hamilto-
nian of eg. 6 an extraterm x% sin(. . .) will appear. Then
after transformation GG, extra potential terms arise already

for the main wavethat may be of the same order asthe phase
focusing if Eio BBE;“ is not sufficiently small. In an electron
linear accelerator this will happen in the first few cells of
thewaveguide. Itisspeculativeto modify all Floquet waves
into E,,(2)Jo(an (2)r) sin( [ (ko(2) + %)dz —wt) , when
d(z) is taken either as smoothly varying or as discontinu-
oudy varying.

TheFloquet waves areinfact abad expansionto represent
the EM fields. They do not converge towards the boundary
conditions. A treatment that is given by Pruiksmaet.a. [6]
may then become more convenient. However, it remains
complicated.

The ponderomotivefocusing forces arise in fact from the
alternating focusing and defocusing actions, where at the
same time the energy of the particle differsfrom one action
to the other.

Also for the longitudina motion a second order focusing

occursdue to theterms &,, sin( 222 — ch) asgivenineg. 6.
They arisewhen aparticlewithaphasedeviationeg. firstis
accel erated somewhat more than a central particle and then
decelerated. These actions each are in first order propor-
tional to the phase deviation and will show at least a second
order effect. A transformation like G5 after first solving for
acentral particle has to be applied.
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