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Abstract

A relativistic Hamiltonian is taken as starting point for an-
alytical calculations of the particle motion in a low energy
electron linear accelerator. In this Hamiltonian the electro-
magnetic space waves are represented as vector potentials.
Also a longitudinal focusing magnetic field is incorporated
by means of its vector potential. For an adequate represen-
tation of the latter, one has to use cartesian coordinates. Af-
ter a few canonical transformations a final Hamiltonian is
obtained that gives insight in several physical phenomena
related to the particle motion. The effect of the energy in-
crease along the accelerator on the transverse focusing is
taken into account. The results are correct up to second or-
der in the amplitudes of the waves.

1 INTRODUCTION

The orbit dynamics in electron linear accelerators are rather
complicated due to a series of electromagnetic (EM) waves
with different propagation constants. Aside the accelerating
wave the harmonic spatial waves following Floquet’s theo-
rem, do occur. Further there is a large increase of energy per
period. Several focusing effects are generally treated sep-
arately, e.g. phase focusing, ponderomotive focusing and
magnetic focusing [1] [2] [3] [4]. Many of these effects are
rather similar to those present in A.V.F. cyclotrons and A.G.
synchrotrons, for which analytical theories using Hamilton
mechanics yield reliable results [5].

Often the description of the particle motion is given in
cylindrical coordinates resulting in a problem for the de-
scription of particles in linacs with non zero azimuthal mo-
mentum.

In this paper the EM fields are represented by their mag-
netic vector potentials, the applied coordinate system is
cartesian with the z-axis pointing along the optical axis.
After a number of successive canonical transformations
a Hamiltonian is constructed with slowly varying coeffi-
cients. Then an adiabatical treatment can be carried out.
This contribution deals with linear motion. However, the
theory is sufficiently general to be further developed for
non linear motion, including coupling effects.

2 THE ELECTROMAGNETIC VECTOR
POTENTIAL

The components of the vector potential representing the EM
waves in polar coordinates are given by

Az = −1
ω
EnJ0(αnr) sin(knz − ωt)

Ar = kn
ω En

1
αn
J1(αnr) cos(knz − ωt)

(1)

Here J0 and J1 are modified Bessel functions, αn is the n-
th zero of J0, En is the electric field amplitude of the n-th
mode, kn = kf + 2πn

d , α2
n = k2

n − k
2, k is the propaga-

tion constant in vacuum, kf is the propagation constant of
the accelerating EM wave which is taken constant. For the
linear theory J0 = 1 + 1

4
α2
nr

2, J1 = 1
2
αnr. In cartesian

coordinates the representation is

Az = −1
ω EnJ0(αnr) sin(knz − ωt)

Ax = kn
2ωEnx cos(knz − ωt)−

1
2B(z)y

Ay = kn
2ωEny cos(knz − ωt) + 1

2B(z)x,

(2)

where B(z) represents an added z-dependent solenoidal
magnetic field.

3 THE BASIC HAMILTONIAN

The relativistic motion is described by the Hamiltonian

H =
{
E2
R + (px − eAx)2c2

+(py − eAy)2c2 + (pz − eAz)2c2
}1/2

,
(3)

with px, py the transversal and pz the longitudinal compo-
nents of the canonical momentum, ER the rest mass energy
and c the speed of light. It is convenient to switch over to
a new Hamiltonian K = −pz. Then the z-coordinate is
the new independent variable, p = −H and t form a pair
of new conjugated canonical variables. By this manipula-
tion trajectories, particle energy and phase are described as
a function of position along the optical axis. Relative mo-
menta, relative field quantities and a new coordinate ζ = ct
are introduced:

πx = px
W0/c

, πy = px
W0/c

, h = −H
W0

En = eEn
W0k

, b = eB(z)c
W0k

, e = ER
W0
,

(4)



withW0 a constant reference energy. A transformation of ζ
is carried out by the generating functionG0:

G0(πx, x, πy, y, h, ζ, z) = −hζ − zh c
vf
− πxx− πyy

ζ = −∂G0

∂h
= ζ + zc

vf

h = −∂G0

∂ζ
= h

K = K + ∂G0

∂z = K − h c
vf

= K − hkfk .

(5)
After this transformation the Hamiltonian becomes

K = −{h2 − e2 −

(πx −
1
2Enknx cos(2πn

d z − ωζ
c ) + 1

2 bky)
2 +

(πy −
1
2Enkny cos(2πn

d z − ωζ
c )− 1

2bkx)2}1/2

− EnJ0(αnr) sin(2πn
d z − ωζ

c )− h
kf
k .

(6)
This Hamiltonian looks rather complex, but after two suc-
cessive transformations it becomes a clear presentation.

4 PHASE FOCUSING AND MAGNETIC
FOCUSING

Two successive transformations are applied. The first one
transforms the canonical momenta πx and πy into new ones
that equal the kinetic momenta. The second one introduces
a transformation to a coordinate system rotating around the
z-axis with half the cyclotron frequency.

Transformation I

G1(πx, x, πy, y, h, ζ, z) = −hζ − πxx− πyy

+1
4
Enknx

2 cos(2πn
d
z − ωζ0

c
)

+1
4
Enkny

2 cos(2πn
d
z − ωζ0

c
),

πx = −∂G1

∂x = πx −
1
2Enknx cos(2πn

d z − ωζ0
c )

x = − ∂G
∂πx

= x, similar eqs. for πy and y.

K = K + ∂G1

∂z .

(7)

The phase ω
c ζ may be seen as a small quantity giving rise

to coupling in non linear terms. This is taken as a constant,
ω
c ζ0, in the derivation of the transversal part of the Hamilto-

nian. One observes that the vector potential is removed from
the canonical momenta πx, πy. It returns as a potential-like
function via ∂G1

∂z .

Transformation II This transformation is applied after ex-
panding the square root in eq. 6.

G2(πx, x, πy, y, h, ζ) = hζ

+πxx cosφ+ πxy sinφ− πyx sinφ+ πyy cosφ,

x = ∂G2

∂πx

πx = ∂G2

∂x

K = K + ∂G2

∂z

and φ = −
∫

1
2
bck
vp
dz.

(8)
The resulting Hamiltonian for only the main wave E0 be-
comes

K2 = −(h2 − e2)1/2 − E0 sin(
ωζ0

c ) − hkfk

+1
2

π2
x+π2

y√
h2

0−e
2

−1
2x

2{ 1
2E0(kfkp − k2) sin(

ωζ0

c ) − 1
4

b2k2
√
h2

0−e
2
}

−1
2y

2{ 1
2E0(kfkp − k2) sin(

ωζ0

c ) − 1
4

b2k2
√
h2

0−e
2
},

(9)
the subscript p refers to the particle. After a transformation
has been carried out bars are removed. This is only conve-
nient if the meaning of a variable is not changed too much.
In the transversal part of the Hamiltonian the synchronous
solution of the longitudinal motion is substituted (h0, ζ0).
Taking the synchronous phase as a small quantity of first or-
der it appears that the complete focusing in eq. 9 is of sec-
ond order: E0 sin(ωζ0/c), b2. In fact the phase focusing be-
comes much smaller towards higher energies.

5 FOCUSING DUE TO OSCILLATING
TERMS

Rapidly oscillating terms of first order yield second order
“constant“ terms after their removal by a suitable canoni-
cal transformation, giving the ponderomotive action. These
terms occur in the longitudinal solution for the synchronous
particle, in the potential function generated by G1 and are
due to the transformation fromH toK .

One has

∆K2 = 1
2(x2 + y2)En

πnk
d sin(2πn

d z),

h0 = E0
2π
λ z + d

nλEn sin(2πn
d z)− wi,

(10)

wi represents the initial energy, its sign arises from the fact
that the momentum h has a negative sign with respect toH .
The first term on the right-hand side of the second equation
represents the steady increase of energy.



All first order oscillating terms can be transformed away
by a third transformation

G3(πx, x, πy, y, h, ζ) = −hζ − aπxx− aπyy + b(x2 + y2)

a2 = 1√
h2

0−e
2
, b = 1

2a
da
dz

πx = −∂G3

∂x

x = −∂G3

∂πx
,

(11)
The final Hamiltonian becomes

Kf = (h2 − e2)1/2 − E0 sin(ωζc )− hkfk

+1
2π

2
x + 1

2π
2
y

+1
2
(x2 + y2){−1

2
E0√
h2

0−e
2
(kfkp − k2) sin(ωζ0

c
)

+1
4
b2k2

h2
0−e

2 + k2

h2
0

(
1
4E

2
0 + 1

8 (En + E−n)2
)
},

(12)
where for simplicity in the derivation of the last focusing

term h2
0

h2
0−e

2 is approximated by unity. The oscillating part

in h0 now has been removed. All field quantities in the fo-
cusing terms are now roughly divided by the energy |h0|.
The variation of the focusing term is slow and can be treated
adiabatically. In standing wave structures, e.g. a Π-mode
structure, E−1 equals E0. For other modes one has to repeat
carefully the transformationG3.

6 REMARKS

The final Hamiltonian Kf is a good representation from
which the particle motion can be derived. The coefficients
for the transversal motion are accurate up to second order in
the wave amplitudes. However, in deriving the ponderomo-
tive action the approximationh2

0 >> e2 has been used. Tak-
ing the constants kf and kp equal one gets k2

f−k
2 = e2

h2
0−e

2 .
For high energies this quantity can be seen as a quantity of
at least order one. Therefore the phase focusing becomes of
minor importance compared to both other terms. For low
energies compared to the rest mass energy (h2

0 − e2)/e2

may be taken as a quantity of order one. Then the phase
focusing and the magnetic focusing become important. The
transformationG3 can be performed again showing the first
order phase focusing and the second order ponderomotive
focusing that occur in a cavity when the energy increase
is small compared to the kinetic energy of a particle. For
(h2

0 − e2)/e2 ' 1 the transformation G3 becomes more
complex and must be followed by a fourth transformation.

If the wave propagation factor is depending on the axial
position z, the arguments of the cos / sin-functions must be
changed into (

∫
k(z)dz − ωt). Solving the wave equation

shows that at the same time the amplitude of the electric field
strength changes with z : E ∼ 1/

√
k(z) . In the Hamilto-

nian of eq. 6 an extra term x∂En∂z sin(. . .) will appear. Then
after transformation G1 extra potential terms arise already

for the main wave that may be of the same order as the phase
focusing if d

E0

∂E0

∂z
is not sufficiently small. In an electron

linear accelerator this will happen in the first few cells of
the waveguide. It is speculative to modify all Floquet waves
intoEn(z)J0(αn(z)r) sin(

∫
(k0(z)+ 2πn

d(z) )dz−ωt) , when
d(z) is taken either as smoothly varying or as discontinu-
ously varying.

The Floquet waves are in fact a bad expansion to represent
the EM fields. They do not converge towards the boundary
conditions. A treatment that is given by Pruiksma et.al. [6]
may then become more convenient. However, it remains
complicated.

The ponderomotive focusing forces arise in fact from the
alternating focusing and defocusing actions, where at the
same time the energy of the particle differs from one action
to the other.

Also for the longitudinal motion a second order focusing

occurs due to the terms En sin(2πn
d −

ωζ
c ) as given in eq. 6.

They arise when a particle with a phase deviation e.g. first is
accelerated somewhat more than a central particle and then
decelerated. These actions each are in first order propor-
tional to the phase deviation and will show at least a second
order effect. A transformation likeG3 after first solving for
a central particle has to be applied.
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