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Abstract

An equation to transform first order beam optics with
space charge is presented. The equation allows to use a
common approach to the beam matching problem in
devices of various kinds. An invariant of the transforma-
tion is function coupling dependent variables of conven-
tional envelope equations. Scaling optical axis the trans-
formation keeps beam size. As a computer tool the new
formalism is used to design matching optics for 433
MHz RFQ.

1.  INTRODUCTION

The problems to design optics for required in size and
slope exit beam at given entrance one are well-known,
especially in case of space-charge-dominated beam. The
direct methods of designing are developed for weak
beam in several simple force field structures. Various
modifications of the hit-and-miss method fall to others’
fate lucky not always. The main reason is that  designing
deals with inversion of the cause-effect relations so with
incorrectness inherent in it. Moreover the modifications
in the most base on the optimization technique (fitting
procedures, non-linear programming methods and the
like) so can solve the task successfully being applied
from the good start point. In other words, solution must
exist and be known if only in outline. The offered ap-
proach intends to overcome this disadvantage.

2.   SCALE EQUATION

Some benefits of the approach are possible to trace on
the envelope equation in an axisymmetric electrostatic
lens. Field of the lens is determined by the axial poten-
tial ( )U z only, the beam envelope so is by start condi-
tions ( )r r0 0= , ( )′ = ′r r0 0  and the equation
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Hence the system of lens and beam can be described by
a space curve on the U r z, ,  coordinates. The conven-
tional application of the equation (1) is to derive the
space curve projection ( )r z  from one on plane Uz, or
conversely. To consider as a given the projection on the
plane Ur  is  idea of the offered technique. Setting some
function coupling potential with beam (i.e. the coupling
function) we assign in advance all values both to beam
size and to the lens potential, including maximal, mini-
mal and boundary ones. The last is especially valuable,
being applied to beam matching.

Another merits follow from form of the equa-
tions which relate the coupling function and an optical
axis:
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This form is valid for all the most frequently used lenses
(full equations for quadrupole, solenoid, bending magnet
see [1-3]) and  invariant with respect to choice of new
independent variable λ . In the considered lens the func-
tion of λ can be performed by the lens potential U as
well as the beam size r   if the coupling function to de-
fine in explicit form ( )r U  or ( )U r . Nevertheless in
practice the parametric representation of the coupling
function ( ) ( ){ }U rλ λ,  with parameter λ  is more conven-
ient. For this case the characteristic function

 ( ) ( ) ( ) ( ) ( )f r U U r1 0 25λ λ λ λ λ= +. &

& .
With z in place λ  the expressions for ( )f2 λ  and ( )f3 λ
are the left- and right-hand parts of the equation (1) re-
spectively. Obviously, the solution ( )M λ ≡1 is possible
when ( ) ( )f f2 3λ λ≡  only, i.e. when given parametrically
coupling function coincides with any solutions of the
equation (1). So implying λ  being measured along the
optical axis, we can treat the M  as a differential coeffi-
cient of scaling. Such a parametrical representation can
be considered as an approximate prescription to beam
and to potential of desirable behaviour. For attaining this
the equation (2) should rescale the axis to fit derivatives
in exact conformity with conventional envelope equa-
tion, of course if it is possible.

Coupling function is realizable (there are solu-
tions of the equation(1) with suitable projection on plane
Ur ) always unless respective integral curve of the equa-
tion (2) goes through zero or has a break. Such solutions
of the equation (2) can be singular only and exist when

( )f1 0
~λ = . In number and location the singular points are

different real roots of the equation
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In kind they are singularities of the linearized equation
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the higher order terms[3].
From this analysis a necessary condition for the

coupling function to be realized is
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When adjacent non-zero singularities (
~
Mi ≠0) are of

different kind or nodes, the condition (3) is also suffi-
cient. In the absence of the singular points there is a va-
riety of the coupling function realizations to be given by
initial conditions for integration of the equation (2).
Each  M0 is the different optics axis scale  at which both
the beam and the potential have another derivatives but
satisfy the specified coupling function as well as the
conventional envelope equation (the ratio of first deriva-
tives remains unchanged). To realize specified coupling
function in vicinity of the saddle point the integral curve
of the equation (2) must cat the saddle centre. Such a
curve is only one and uniquely determines the proper
initial value of M . In the neighbourhood of non-zero
nodal point  the specified coupled function can be real-
ized on  set of all the  integral curves passing through the
node. Unless a2 3 1, =  the integral curves have in the node

a common tangent line. This makes possible to joint per-
fectly any solutions of obtained at the left and the right
from the singularity, so to solve matching problem for-
mally  by substituting the required boundary values of
M  for initial ones.

The properties of the parametric representation
suggests to utilize instead of the coupling function the
beam and the potential of lens designed previously or
being under tuning, if to change the lens performance is
need. When given parametrically coupling function is a
solution of the conventional envelope equation and al-
lows multiplicity of realizations, integration of the equa-
tion (2) with M0 1>  derives lens of greater length

( )L M d=∫ λ λ  but smaller first derivatives

d dz M d d= −1 λ. The integration with M0 1<  does in
contrast, since the integral curves do not meet except for
singular points, so the value (M -1) saves sign. The same
can be done for retuning (redesigning) lens on new cur-
rent, emittance, kind of particles by simple substituting
their new values in ( )f3 λ . From this viewpoint the
equation (2) is the generalized equation of scale trans-
formation for first order beam optics with the coupling
function as invariant.

3. GENERAL PRINCIPLES

As a result may be stated that application of the equation
(2) reduces designing (tuning) lenses for required  per-
formance to a sufficiently free choice (correction) of the
coupling function to form or not to form the appointed
singularities of the main equation. From the analysis of

the equation some principles general for lenses of vari-
ous kinds follow (validity and comments see [1]).

Any coupling function provides required trans-
formation of beam size when is realizable and has the
proper boundary values.

The same coupling function is realizable over a
wade range of currents, emittances, kinds of particles
and the like.

The coupling function can be linearly scaled
still staying the realizable.

The coupling function provides required beam
size with any slope of the same sign when forms non-
zero nodal point adjacent to the bound.

When the coupling function forms adjacent to
the bound non-zero saddle point, there is the only slope
of  beam to realize this one. Some boundary conditions
cause these discomforts unfailingly. Required beam
slope then can be achieved by variation of the coupling
function fixed on the edges. Another way is an optics
piece  of known in advance performance, inserted in the
lens to transform the boundary conditions in any more
comfortable.

To optimize lens for aberration, length, etc., the
coupling function can be varied without changing beam
in size and slope at the edges. For doing this handy the
equation (2) as a special case of the Bernoulli equation
can be reduced to linear inhomogeneus one with solution
in quadratures.

The same coupling function guarantees the
lenses of any length no less than a certain when forms
two non-zero nodal points to be alongside.

4.  APPLICATION

As a computer tool the new formalism was used to re-
design matching optics for 433 MHz RFQ  on more
heavy ions in context of extending the possible applica-
tion of the machine. Forming the 25 mA D±  beam in-
stead of the 20 mA H±  one and matching it into the
RFQ, the optics and injector as a whole should be in
agreement with  conventional standards on construction,
vacuum, electrical strength. The specific requirement of
the designs is the simplest power supplies to apply the
voltage of  two values only in compliance with  energy
of the beam extraction  from the source (16 keV) and
energy of injection to RFQ (60 keV). Because of this
limitation the injector involves two optical elements:
1)bending magnet of rare-earth permanent magnets to
put the beam from the slit ion source into near-axisym-
metric form and to separate the beam; 2) a set of axi-
symmetric apertures at the alternating electrostatic po-
tentials to transport this beam within the distance suffi-
cient for required pumping, to accelerate and match it
into the RFQ. In detail the design of the H±  matching
optics was considered in [4]. The requirements for the
D±  beam at RFQ entrance see [5]. Design of the bending



magnet in case of the space-charge neutralization in the
back ground gas is not presented here because of the
paper limit. The entrance and exit beam parameters (in
mm, mrad, mA) to redesign the matching optics are
listed in the Table 1.

                                                                   Table 1
ren ′ren rex ′rex I En ex

H± 9.5 15. 1.5 -50. 20. 0.40
D± 8.5 10. 2.0 -40. 25. 0.16

In principle, the axial potential for the new lens
could be derived by one integration of the equation (2)
(shape of  electrodes from this potential can be recon-
structed in various ways [1,6]). In effort to illustrate
some scope for the approach the scaling was divided into
three steps. For each  of them  the shape of electrodes
and the beam envelope are shown on Fig.(1-3) in dash
lines before scaling, in solid ones after.  The scaling was
started from the  H±  optics by changing the space charge
factor and the emittance  law in ( )f3 λ  (emittance was
assumed to growth just higher and be at exit as the re-
quired). The next modification (see Fig.2) was to have
up the beam size needed at the entrance. For this doing

the beam envelope was factored suitably and again sub-
stituted in the equation (2). For finishing the main equa-
tion was integrated from such  initial values of M  to
obtain at the bounds the  beam size of required slope
(Fig.3). Boundary conditions with the diverged entrance
beam and the converged exit one at vanish field of the
lens make possible this always.
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          Fig.1 Beam envelope and electrode contours before and after first step of scaling.
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           Fig.2 Beam envelope and electrode contours before and after second step of scaling.
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           Fig.3 Beam envelope and electrode contours before and after third step of scaling.


